Hydrothermal Carbonization of Soybean Milk Residue (Okara) for Nutrient and Energy Recovery
Main Article Content
Abstract
Turning agricultural waste and by-products into benefits has always been an environmental and economical goal, especially in soymilk and tofu industries. This study explores the nutrients and energy recovery from soybean milk residue (okara) utilizing hydrothermal carbonization (HTC). The research focused on: i) The optimization of the HTC process; ii) The humic acid and nutrient recovery from HTC liquor; and iii) The effects of HTC conditions on the fuel properties of hydrochars. We found that, at optimal conditions, 90.5% phosphorus and 70.8% nitrogen in the pristine okara were extracted into HTC solution. These led to the recovery of 82% humid acid and 99.9% phosphorus from HTC solution, respectively. Additionally, nitrogen in HTC liquor was recovered as (NH4)2SO4 solution of 1026.7 mg N/L. The attained hydrochar exhibited a higher heating value (HHV) (23.04 MJ/kg), equivalent to or greater than hydrochars derived from the raw okara (15.03 MJ/kg) and other agro-wastes (16.20 - 22.30 MJ/kg). This study proves that acid-supported HTC is a promising method for the simultaneous recovery of nutrients and energy from okara, opening the way for its successful valorization.
References
[2] K. Czerwińska, M. Śliz, M. Wilk, Hydrothermal Carbonization Process: Fundamentals, Main Parameter Characteristics and Possible Applications Including an Effective Method of SARS-Cov-2 Mitigation in Sewage Sludge. A Review, Renewable and Sustainable Energy Reviews, Vol. 154, No. 111873, 2022, pp. 1-17, https://doi.org/10.1016/j.rser.2021.111873.
[3] D. L. Perez, P. C. T. Mayanga, E. R. Abaide, G. L. Zabot, F. D. Castilhos, Hydrothermal Carbonization and Liquefaction: Differences, Progress, Challenges, and Opportunities, Bioresource Technology, Vol. 343, No. 126084, 2022, pp. 1-15, https://doi.org/10.1016/j.biortech.2021.126084.
[4] L. Fiori, D. Basso, D. Castello, M. Baratieri, Hydrothermal Carbonization of Biomass: Design of a Batch Reactor and Preliminary Experimental Results, Chemical Engineering Transactions,
Vol. 37, 2014, pp. 55-60, https://doi.org/10.3303/CET1437010.
[5] U. Ekpo, A. B. Ross, M. A. C. Valero, L. A. Fletcher, Influence of pH on Hydrothermal Treatment of Swine Manure: Impact on Extraction of Nitrogen and Phosphorus in Process Water, Bioresource Technology, Vol. 214, 2016, pp. 637-644, https://doi.org/10.1016/j.biortech.2016.05.012.
[6] A. S. Oliveira, A. Sarrión, J. A. Baeza, E. Diaz,
L. Calvo, A. F. Mohedano, M. A. Gilarranz, Integration of Hydrothermal Carbonization and Aqueous Phase Reforming for Energy Recovery from Sewage Sludge, Journal of Chemical Engineering, Vol. 442, No. 136301, 2022, pp. 1-12, https://doi.org/10.1016/j.cej.2022.136301.
[7] J. B. Xiong, Z. Q. Pan, X. F. Xiao, H. J. Huang, F. Y. Lai, J. X. Wang, S. W. Chen, Study on the Hydrothermal Carbonization of Swine Manure: the Effect of Process Parameters on the Yield/Properties of Hydrochar and Process Water, Journal of Analytical and Applied Pyrolysis,
Vol. 144, No. 104692, 2019, pp. 1-10, https://doi.org/10.1016/j.jaap.2019.104692.
[8] T. A. H. Nguyen, T. H. Bui, W. S. Guo, H. H. Ngo, Valorization of the Aqueous Phase from Hydrothermal Carbonization of Different Feedstocks: Challenges and Perspectives, Journal of Chemical Engineering, Vol. 472, No. 144802, pp. 1-11, https://doi.org/10.1016/j.cej.2023.144802. 2023.
[9] Y. Yang, H. Li, Recovering Humic Substances from the Dewatering Effluent of Thermally Treated Sludge and Its Performance as an Organic Fertilizer, Frontiers of Environmental Science & Engineering, Vol. 10, 2016, pp. 578-584, https://doi.org/10.1007/s11783-015-0827-5.
[10] Y. Ding, C. Guo, S. Qin, B. Wang, P. Zhao, X. Cui, Effects of Process Water Recirculation on Yields and Quality of Hydrochar from Hydrothermal Carbonization Process of Rice Husk, Journal of Analytical and Applied Pyrolysis, Vol. 166, No. 105618, 2022, pp. 1-8, https://doi.org/10.1016/j.jaap.2022.105618.
[11] B. Li, M. Qiao, F. Lu, Composition, Nutrition, and Utilization of Okara (Soybean Residue), Food Reviews International, Vol. 28, No. 3, 2012,
pp. 231-252, https://doi.org/10.1080/87559129.2011.595023.
[12] A. R. Sahito, R. B. Mahar, Z. Siddiqui, K. M. Brohi, Estimating Calorific Values of Lignocellulosic Biomass from Volatile and Fixed Solids, International Journal of Biomass and Renewables, Vol. 2, No. 1, 2013, pp. 1-6, https://doi.org/10.61762/ijbrvol2iss1art13847.
[13] S. V. Qaramaleki, J. A. Villamil, A. F. Mohedano, C. J. Coronella, Factors Affecting Solubilization of Phosphorus and Nitrogen through Hydrothermal Carbonization of Animal Manure, ACS Sustainable Chemistry & Engineering Journal, Vol. 8, No. 33, 2020, pp. 12462-12470, https://doi.org/10.1021/acssuschemeng.0c03268.
[14] L. Dai, F. Tan, B. Wu, M. He, W. Wang, X. Tang, Q. Hu, M. Zhang, Immobilization of Phosphorus in Cow Manure during Hydrothermal Carbonization, Journal of Environmental Management, Vol. 157, 2015, pp. 49-53, https://doi.org/10.1016/j.jenvman.2015.04.009.
[15] W. Zhu, Z. R. Xu, L. Li, C. He, The Behavior of Phosphorus in Sub- and Super-Critical Water Gasification of Sewage Sludge, Chemical Engineering Journal, Vol. 171, No. 1, 2011, pp. 190-196, https://doi.org/10.1016/j.cej.2011.03.090.
[16] L. Dai, B. Yang, H. Li, F. Tan, N. Zhu, Q. Zhu, M. He, Y. Ran, G. Hu, A Synergistic Combination of Nutrient Reclamation from Manure and Resultant Hydrochar Upgradation by Acid-Supported Hydrothermal Carbonization, Bioresource Technology, Vol. 243, 2017, pp. 860-866, https://doi.org/10.1016/j.biortech.2017.07.016.
[17] A. A. Szögi, M. B. Vanotti, P. G. Hunt, Phosphorus Recovery from Pig Manure Solids prior to Land Application, Journal of Environmental Management, Vol. 157, 2015, pp. 1-7, https://doi.org/10.1016/j.jenvman.2015.04.010.
[18] W. Yang, T. Shimanouchi, Y. Kimura, Characterization of Hydrochar Prepared from Hydrothermal Carbonization of Peels of Carya Cathayensis Sarg, Desalination Water Treatment, Vol. 53, No. 10, 2015, pp. 2831-2838, https://doi.org/10.1080/19443994.2014.931537.
[19] M. Sevilla, J. A. M. Agulló, A. B. Fuertes, Hydrothermal Carbonization of Biomass as a Route for the Sequestration of CO2: Chemical and Structural Properties of the Carbonized Products, Biomass Bioenergy, Vol. 35, No. 7, 2011, pp. 3152-3159, https://doi.org/10.1016/j.biombioe.2011.04.032.
[20] Z. Liu, A. Quek, S. K. Hoekman, R. Balasubramanian, Production of Solid Biochar Fuel from Waste Biomass by Hydrothermal Carbonization, Fuel, Vol. 103, 2013, pp. 943-949, https://doi.org/10.1016/j.fuel.2012.07.069.
[21] J. Mumme, L. Eckervogt, J. Pielert, M. Diakité, F. Rupp, J. Kern, Hydrothermal Carbonization of Anaerobically Digested Maize Silage, Bioresource Technology, Vol. 102, No. 19, 2011, pp. 9255-9260, https://doi.org/10.1016/j.biortech.2011.06.099.
[22] H. Zhan, X. Zhuang, S. Zhang, G. Chang, X. Wang, Z. Zeng, Evaluation on the Enhanced Solid Biofuel from Co-Hydrothermal Carbonization of Pharmaceutical Biowastes with Lignite, Fuel, Vol. 318, No. 123626, 2022, pp. 1-12, https://doi.org/10.1016/j.fuel.2022.123626.
[23] C. Lin, P. Zhao, Y. Ding, X. Cui, F. Liu, C. Wang, Q. Guo, Hydrogen-rich Gas Production from Hydrochar Derived from Hydrothermal Carbonization of PVC and Alkali Coal, Fuel Processing Technology, Vol. 222, No. 106959, 2021, pp. 1-9, https://doi.org/10.1016/j.fuproc.2021.106959.