2,4-Dinitrotoluene (DNT) Removal Efficiency Using the Sono-photo-fenton Process Combined with Nano Zero Valent Iron (nZVI) Heterogeneous Catalysis
Main Article Content
Abstract
2,4-Dinitrotoluene (DNT) is a highly toxic compound of nitrotoluene group causing negative impacts on mammals, fish, and human health that needs to be treated before discharging. The study aimed to evaluate the affecting factors on efficiency of DNT treatment by Sono-Photo-Fenton process using zero-valent iron catalysts (nZVI), including: pH, intial DNT concentration, nZVI catalyst concentration, hydrogen peoxide concentration, light power, and ultrasonic power. After 20 minutes of Sono-Photo-Fenton reaction, the DNT removal efficiency was 100% with optimal operating conditions as following: pH=3.0, CDNT = 50 mg/L, CH2O2 = 20 mM, CnZVI = 1 mM, UV power of 10 W, ultrasonic power of 80 W.
Keywords:
Sono-Photo-Fenton, nZVI, 2,4-Dinitrotoluen.
References
[1] M. S. Johnson, M. W. Michie, M. A. Bazar, R. M. G. Jr, Influence of Oral 2, 4-Dinitrotoluene Exposure to the Northern Bobwhite (Colinus Virginianus), International Journal of Toxicology, Vol. 24, No. 4, 2005, pp. 265-274, https://doi.org/10.1080/10915810591007247.
[2] D. Cassidy, A. Northup, D. Hampton, The Effect of Three Chemical Oxidants on Subsequent Biodegradation of 2, 4‐Dinitrotoluene (Dnt) in Batch Slurry Reactors, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, Vol. 84, No. 6, 2009. pp. 820-826, https://doi.org/10.1002/jctb.2140.
[3] USEPA, Ambient Water Quality Criteria Doc: Dinitrotoluene 1980, EPA 440/5-80-045.
[4] P. T. Dung, Investigation into the Treatment of Wastewater Contaminated by Explosives with Nitro Phenol Compounds Using Chemical Agents Combined with Aquatic Plants, in Environmental Science, VNU University of Science VNU-HUS, 2012.
[5] J. Chen, J. Ren, C. Ye, L. Li, C. Yang, T. Qiu, Highly Selective Removal of 2, 4-Dinitrotoluene for Industrial Wastewater Treatment through Hyper-Cross-Linked Resins, Journal of Cleaner Production, Vol. 288, 2021. pp. 125128, https://doi.org/10.1016/j.jclepro.2020.125128.
[6] A. Dargahi, M. Vosoughi, S. A. Mokhtari, Y. Vaziri, M. Alighadri, Electrochemical Degradation of 2, 4-Dinitrotoluene (Dnt) from Aqueous Solutions Using Three-Dimensional Electrocatalytic Reactor (3der): Degradation Pathway, Evaluation of Toxicity and Optimization Using Rsm-Ccd, Arabian Journal of Chemistry, Vol. 15, No. 3, 2022, pp. 103648, https://doi.org/10.1016/j.arabjc.2021.103648.
[7] W. H. Zhang, Y. D. Deng, Z. F. Chen, Z. H. Zuo, Y. S. Tian, J. Xu, B. Wang, L. J. Wang, H. J. Han, Z. J. Li, Metabolic Engineering of Escherichia Coli for 2, 4-Dinitrotoluene Degradation, Ecotoxicology and Environmental Safety,
Vol. 262, 2023, pp. 115287, https://doi.org/10.1016/j.ecoenv.2023.115287.
[8] A. A. Medina, E. Shahsavari, M. Taha, A. Bates, L. Van Ieperen, A. S. Ball, The Impacts of Different Biological Treatments on the Transformation of Explosives Waste Contaminated Sludge. Molecules, Vol. 26, No. 16, 2021, pp. 4814, https://doi.org/10.3390/molecules26164814.
[9] P. S. Tung, D. B. Minh, A. D. Thang, N. V. Huong, N. V. Hoang, Study Some Factors Affecting the Efficiency of Treatment of 2,4-Dinitrotoluene (Dnt) in Water by Uv-Fenton Method, Journal of Military Science and Technology, 2023, pp. 209-215, https://doi.org/10.54939/1859043.j.mst.FEE.2023.209-215.
[10] H. R. Pouretedal, Visible Photocatalytic Activity of Co-Doped Tio2/Zr, N Nanoparticles in Wastewater Treatment of Nitrotoluene Samples, Journal of Alloys and Compounds, Vol. 735, 2018,
pp. 2507-2511, https://doi.org/10.1016/j.jallcom.2017.12.018.
[11] X. Li, H. Cao, Y. Cao, Y. Zhao, W. Zhang, J. Shen, Z. Sun, F. Ma, Q. Gu, Insights into the Mechanism of Persulfate Activation with Biochar Composite Loaded with Fe for 2, 4-Dinitrotoluene Degradation, Journal of Environmental Management, Vol. 341, 2023, pp. 117955, https://doi.org/10.1016/j.jenvman.2023.117955.
[12] S. Wu, S. Deng, F. Xia, X. Han, T. Ju, H. Xiao, X. Xu, Y. Yang, Y. Jiang, and B. Xi, A Novel Thermosensitive Persulfate Controlled-Release Hydrogel Based on Agarose/Silica Composite for Sustained Nitrobenzene Degradation from Groundwater, Journal of Hazardous Materials, Vol. 445, 2023, pp. 130619, https://doi.org/10.1016/j.jhazmat.2022.130619.
[13] M. I. Litter, M. Slodowicz, An Overview on Heterogeneous Fenton and Photofenton Reactions Using Zerovalent Iron Materials, Journal of Advanced Oxidation Technologies, Vol. 20, No. 1, 2017, pp. 20160164, https://doi.org/10.1515/jaots-2016-0164.
[14] R. Saleh, A. Taufik, Degradation of Methylene Blue and Congo-Red Dyes Using Fenton, Photo-Fenton, Sono-Fenton, and Sonophoto-Fenton Methods in the Presence of Iron (Ii, Iii) Oxide/Zinc Oxide/Graphene (Fe3o4/Zno/Graphene) Composites, Separation and Purification Technology, Vol. 210, 2019, pp. 563-573, https://doi.org/10.1016/j.seppur.2018.08.030.
[15] QDND, The Chemistry and Stability of Explosive Materials, Hanoi, 2002.
[16] V. H. Nguyen, S. T. Pham, M. T. Le, T. D. Le, The Effectiveness of Tnt Yellow Wastewater Treatment by Using Photo-Fenton Process, Journal of Military Science and Technology, Vol. 88,
No. 88, 2023, pp. 87-94, https://doi.org/10.54939/18591043.j.mst.88.2023.87-94.
[17] B. Kakavandi, M. Ahmadi, J. Bedia, M. Hashamfirooz, A. Naderi, V. Oskoei, H. Yousefian, R. R. Kalantary, R. Pelalak, R. Dewil, Metronidazole Degradation Mechanism by Sono-Photo-Fenton Processes Using a Spinel Ferrite Cobalt on Activated Carbon Catalyst, Chemosphere, 2024, pp. 142102, https://doi.org/10.1016/j.chemosphere.2024.142102.
[18] L. Wang, J. Yang, Y. Li, J. Lv, J. Zou, Removal of Chlorpheniramine in a Nanoscale Zero-Valent Iron Induced Heterogeneous Fenton System: Influencing Factors and Degradation Intermediates, Chemical Engineering Journal, Vol. 284, 2016, pp. 1058-1067, https://doi.org/10.1016/j.cej.2015.09.042.
[19] A. Khataee, P. Gholami, B. Vahid, S. W. Joo, Heterogeneous Sono-Fenton Process Using Pyrite Nanorods Prepared by Non-Thermal Plasma for Degradation of an Anthraquinone Dye, Ultrasonics Sonochemistry, Vol. 32, 2016, pp. 357-370, https://doi.org/10.1016/j.ultsonch.2016.04.002.
[20] A. Khataee, R. D. C. Soltani, A. Karimi, S. W. Joo, Sonocatalytic Degradation of a Textile Dye over Gd-Doped Zno Nanoparticles Synthesized through Sonochemical Process, Ultrasonics Sonochemistry, Vol. 23, 2015, pp. 219-230, https://doi.org/10.1016/j.jallcom.2017.12.018.
[21] Q. Zhou, Y. Liu, G. Yu, F. He, K. Chen, D. Xiao, X. Zhao, Y. Feng, J. Li, Degradation Kinetics of Sodium Alginate Via Sono-Fenton, Photo-Fenton and Sono-Photo-Fenton Methods in the Presence of TiO2 Nanoparticles, Polymer Degradation and Stability, Vol. 135, 2017, pp. 111-120, https://doi.org/10.1016/j.polymdegradstab.2016.11.012.
[22] J. H. Sun, S. P. Sun, J. Y. Sun, R. X. Sun, L. P. Qiao, H. Q. Guo, M. H. Fan, Degradation of Azo Dye Acid Black 1 Using Low Concentration Iron of Fenton Process Facilitated by Ultrasonic Irradiation. Ultrasonics Sonochemistry, Vol. 14, No. 6, 2007, pp. 761-766, https://doi.org/10.1016/j.ultsonch.2006.12.010.
[23] J. Lu, Y. Zhou, L. Ling, Y. Zhou, Enhanced Activation of Pms by a Novel Fenton-Like Composite Fe3o4/S-Wo3 for Rapid Chloroxylenol Degradation. Chemical Engineering Journal, Vol. 446, 2022, pp. 137067, https://doi.org/10.1016/j.cej.2022.137067.
[24] F. Wang, Z. Sun, X. Shi, L. Wang, W. Zhang,
Z. Zhang, Mechanism Analysis of Hydroxypropyl Guar Gum Degradation in Fracture Flowback Fluid by Homogeneous Sono-Fenton Process, Ultrasonics Sonochemistry, Vol. 93, 2023, pp. 106298 https://doi.org/10.1016/j.ultsonch.2023.106298.
[25] L. J. Xu, W. Chu, N. Graham, Degradation of Di-N-Butyl Phthalate by a Homogeneous Sono–Photo–Fenton Process with in Situ Generated Hydrogen Peroxide, Chemical Engineering Journal, Vol. 240, 2014 pp. 541-547, https://doi.org/10.1016/j.cej.2013.10.087.
[26] A. Babuponnusami, K. Muthukumar, Degradation of Phenol in Aqueous Solution by Fenton, Sono‐Fenton and Sono‐Photo‐Fenton Methods, CLEAN – Soil, Air, Water, Vol. 39, No. 2, 2011, pp. 142-147, https://doi.org/10.1002/clen.201000072.
[27] A. Babuponnusami, K. Muthukumar, A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment, Journal of Environmental Chemical Engineering, Vol. 2,
No. 1 2014, pp. 557-572, https://doi.org/10.1016/j.jece.2013.10.011.
[28] M. Hosseini, M. R. R. Kahkha, A. Fakhri, S. Tahami, M. J. Lariche, Degradation of Macrolide Antibiotics Via Sono or Photo Coupled with Fenton Methods in the Presence of Zns Quantum Dots Decorated Sno(2) Nanosheets. J Photochem Photobiol B, Vol. 185, 2018, pp. 24-31, https://doi.org/10.1016/j.jphotobiol.2018.05.022.
[29] A. Shokri, Application of Sono–Photo-Fenton Process for Degradation of Phenol Derivatives in Petrochemical Wastewater Using Full Factorial Design of Experiment, International Journal of Industrial Chemistry, Vol. 9, No. 9, 2018, pp. 295-303, https://doi.org/10.1007/s40090-018-0159-y.
[30] F. Hasanvandian, M. Moradi, S. A. Samani, B. Kakavandi, S. R. Setayesh, and M. Noorisepehr, Effective Promotion of G–C3n4 Photocatalytic Performance Via Surface Oxygen Vacancy and Coupling with Bismuth-Based Semiconductors Towards Antibiotics Degradation, Chemosphere, Vol. 287, 2022, pp. 132273, https://doi.org/10.1016/j.chemosphere.2021.132273.
[31] A. ElMetwally, G. Eshaq, A. A. Sabagh, F. Yehia, C. Philip, N. Moussa, G. M. ElShafei, Insight into Heterogeneous Fenton-Sonophotocatalytic Degradation of Nitrobenzene Using Metal Oxychlorides, Separation and Purification Technology, Vol. 210, 2019, pp. 452-462, https://doi.org/10.1016/j.seppur.2018.08.029.
[32] K. Jyothi, S. Yesodharan, E. Yesodharan, Sono- Photo-and Sonophotocatalytic Decontamination of Organic Pollutants in Water: Studies on the Lack of Correlation between Pollutant Degradation and Concurrently Formed H2O2, Current Science, 2015, pp. 189-195, http://www.jstor.org/stable/24905704.
[33] Y. Chen, A. Lu, Y. Li, H. Y. Yip, T. An, G. Li, P. Jin, P. K. Wong, Photocatalytic Inactivation of Escherichia Coli by Natural Sphalerite Suspension: Effect of Spectrum, Wavelength and Intensity of Visible Light, Chemosphere, Vol. 84, No. 9, 2011, pp. 1276-1281, https://doi.org/10.1016/j.chemosphere.2011.05.055.
[34] S. Chakma, V. S. Moholkar, Sonochemical Synthesis of Mesoporous Zrfe2O5 and Its Application for Degradation of Recalcitrant Pollutants, Rsc Advances, Vol, 5, No. 66, 2015,
pp. 53529-53542, https://doi.org/10.1039/C5RA06148B.
[35] M. A. N. Khan, M. Siddique, F. Wahid, R. Khan, Removal of Reactive Blue 19 Dye by Sono, Photo and Sonophotocatalytic Oxidation Using Visible Light. Ultrasonics Sonochemistry, Vol. 26, 2015, pp. 370-377,
https://doi.org/10.1016/j.ultsonch.2015.04.012.
[36] N. H. Ince, Ultrasound-Assisted Advanced Oxidation Processes for Water Decontamination. Ultrasonics Sonochemistry, Vol. 40, 2018, pp. 97-103, https://doi.org/10.1016/j.ultsonch.2017.04.009.
[37] A. Takdastan, M. Ravanbakhsh, M. Hazrati, S. Safapour, Removal of Dinitrotoluene from Petrochemical Wastewater by Fenton Oxidation, Kinetics and the Optimum Experiment Conditions. SN Applied Sciences, Vol. 1, 2019, pp. 1-8, https://doi.org/10.1007/s42452-019-0812-x.
[2] D. Cassidy, A. Northup, D. Hampton, The Effect of Three Chemical Oxidants on Subsequent Biodegradation of 2, 4‐Dinitrotoluene (Dnt) in Batch Slurry Reactors, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, Vol. 84, No. 6, 2009. pp. 820-826, https://doi.org/10.1002/jctb.2140.
[3] USEPA, Ambient Water Quality Criteria Doc: Dinitrotoluene 1980, EPA 440/5-80-045.
[4] P. T. Dung, Investigation into the Treatment of Wastewater Contaminated by Explosives with Nitro Phenol Compounds Using Chemical Agents Combined with Aquatic Plants, in Environmental Science, VNU University of Science VNU-HUS, 2012.
[5] J. Chen, J. Ren, C. Ye, L. Li, C. Yang, T. Qiu, Highly Selective Removal of 2, 4-Dinitrotoluene for Industrial Wastewater Treatment through Hyper-Cross-Linked Resins, Journal of Cleaner Production, Vol. 288, 2021. pp. 125128, https://doi.org/10.1016/j.jclepro.2020.125128.
[6] A. Dargahi, M. Vosoughi, S. A. Mokhtari, Y. Vaziri, M. Alighadri, Electrochemical Degradation of 2, 4-Dinitrotoluene (Dnt) from Aqueous Solutions Using Three-Dimensional Electrocatalytic Reactor (3der): Degradation Pathway, Evaluation of Toxicity and Optimization Using Rsm-Ccd, Arabian Journal of Chemistry, Vol. 15, No. 3, 2022, pp. 103648, https://doi.org/10.1016/j.arabjc.2021.103648.
[7] W. H. Zhang, Y. D. Deng, Z. F. Chen, Z. H. Zuo, Y. S. Tian, J. Xu, B. Wang, L. J. Wang, H. J. Han, Z. J. Li, Metabolic Engineering of Escherichia Coli for 2, 4-Dinitrotoluene Degradation, Ecotoxicology and Environmental Safety,
Vol. 262, 2023, pp. 115287, https://doi.org/10.1016/j.ecoenv.2023.115287.
[8] A. A. Medina, E. Shahsavari, M. Taha, A. Bates, L. Van Ieperen, A. S. Ball, The Impacts of Different Biological Treatments on the Transformation of Explosives Waste Contaminated Sludge. Molecules, Vol. 26, No. 16, 2021, pp. 4814, https://doi.org/10.3390/molecules26164814.
[9] P. S. Tung, D. B. Minh, A. D. Thang, N. V. Huong, N. V. Hoang, Study Some Factors Affecting the Efficiency of Treatment of 2,4-Dinitrotoluene (Dnt) in Water by Uv-Fenton Method, Journal of Military Science and Technology, 2023, pp. 209-215, https://doi.org/10.54939/1859043.j.mst.FEE.2023.209-215.
[10] H. R. Pouretedal, Visible Photocatalytic Activity of Co-Doped Tio2/Zr, N Nanoparticles in Wastewater Treatment of Nitrotoluene Samples, Journal of Alloys and Compounds, Vol. 735, 2018,
pp. 2507-2511, https://doi.org/10.1016/j.jallcom.2017.12.018.
[11] X. Li, H. Cao, Y. Cao, Y. Zhao, W. Zhang, J. Shen, Z. Sun, F. Ma, Q. Gu, Insights into the Mechanism of Persulfate Activation with Biochar Composite Loaded with Fe for 2, 4-Dinitrotoluene Degradation, Journal of Environmental Management, Vol. 341, 2023, pp. 117955, https://doi.org/10.1016/j.jenvman.2023.117955.
[12] S. Wu, S. Deng, F. Xia, X. Han, T. Ju, H. Xiao, X. Xu, Y. Yang, Y. Jiang, and B. Xi, A Novel Thermosensitive Persulfate Controlled-Release Hydrogel Based on Agarose/Silica Composite for Sustained Nitrobenzene Degradation from Groundwater, Journal of Hazardous Materials, Vol. 445, 2023, pp. 130619, https://doi.org/10.1016/j.jhazmat.2022.130619.
[13] M. I. Litter, M. Slodowicz, An Overview on Heterogeneous Fenton and Photofenton Reactions Using Zerovalent Iron Materials, Journal of Advanced Oxidation Technologies, Vol. 20, No. 1, 2017, pp. 20160164, https://doi.org/10.1515/jaots-2016-0164.
[14] R. Saleh, A. Taufik, Degradation of Methylene Blue and Congo-Red Dyes Using Fenton, Photo-Fenton, Sono-Fenton, and Sonophoto-Fenton Methods in the Presence of Iron (Ii, Iii) Oxide/Zinc Oxide/Graphene (Fe3o4/Zno/Graphene) Composites, Separation and Purification Technology, Vol. 210, 2019, pp. 563-573, https://doi.org/10.1016/j.seppur.2018.08.030.
[15] QDND, The Chemistry and Stability of Explosive Materials, Hanoi, 2002.
[16] V. H. Nguyen, S. T. Pham, M. T. Le, T. D. Le, The Effectiveness of Tnt Yellow Wastewater Treatment by Using Photo-Fenton Process, Journal of Military Science and Technology, Vol. 88,
No. 88, 2023, pp. 87-94, https://doi.org/10.54939/18591043.j.mst.88.2023.87-94.
[17] B. Kakavandi, M. Ahmadi, J. Bedia, M. Hashamfirooz, A. Naderi, V. Oskoei, H. Yousefian, R. R. Kalantary, R. Pelalak, R. Dewil, Metronidazole Degradation Mechanism by Sono-Photo-Fenton Processes Using a Spinel Ferrite Cobalt on Activated Carbon Catalyst, Chemosphere, 2024, pp. 142102, https://doi.org/10.1016/j.chemosphere.2024.142102.
[18] L. Wang, J. Yang, Y. Li, J. Lv, J. Zou, Removal of Chlorpheniramine in a Nanoscale Zero-Valent Iron Induced Heterogeneous Fenton System: Influencing Factors and Degradation Intermediates, Chemical Engineering Journal, Vol. 284, 2016, pp. 1058-1067, https://doi.org/10.1016/j.cej.2015.09.042.
[19] A. Khataee, P. Gholami, B. Vahid, S. W. Joo, Heterogeneous Sono-Fenton Process Using Pyrite Nanorods Prepared by Non-Thermal Plasma for Degradation of an Anthraquinone Dye, Ultrasonics Sonochemistry, Vol. 32, 2016, pp. 357-370, https://doi.org/10.1016/j.ultsonch.2016.04.002.
[20] A. Khataee, R. D. C. Soltani, A. Karimi, S. W. Joo, Sonocatalytic Degradation of a Textile Dye over Gd-Doped Zno Nanoparticles Synthesized through Sonochemical Process, Ultrasonics Sonochemistry, Vol. 23, 2015, pp. 219-230, https://doi.org/10.1016/j.jallcom.2017.12.018.
[21] Q. Zhou, Y. Liu, G. Yu, F. He, K. Chen, D. Xiao, X. Zhao, Y. Feng, J. Li, Degradation Kinetics of Sodium Alginate Via Sono-Fenton, Photo-Fenton and Sono-Photo-Fenton Methods in the Presence of TiO2 Nanoparticles, Polymer Degradation and Stability, Vol. 135, 2017, pp. 111-120, https://doi.org/10.1016/j.polymdegradstab.2016.11.012.
[22] J. H. Sun, S. P. Sun, J. Y. Sun, R. X. Sun, L. P. Qiao, H. Q. Guo, M. H. Fan, Degradation of Azo Dye Acid Black 1 Using Low Concentration Iron of Fenton Process Facilitated by Ultrasonic Irradiation. Ultrasonics Sonochemistry, Vol. 14, No. 6, 2007, pp. 761-766, https://doi.org/10.1016/j.ultsonch.2006.12.010.
[23] J. Lu, Y. Zhou, L. Ling, Y. Zhou, Enhanced Activation of Pms by a Novel Fenton-Like Composite Fe3o4/S-Wo3 for Rapid Chloroxylenol Degradation. Chemical Engineering Journal, Vol. 446, 2022, pp. 137067, https://doi.org/10.1016/j.cej.2022.137067.
[24] F. Wang, Z. Sun, X. Shi, L. Wang, W. Zhang,
Z. Zhang, Mechanism Analysis of Hydroxypropyl Guar Gum Degradation in Fracture Flowback Fluid by Homogeneous Sono-Fenton Process, Ultrasonics Sonochemistry, Vol. 93, 2023, pp. 106298 https://doi.org/10.1016/j.ultsonch.2023.106298.
[25] L. J. Xu, W. Chu, N. Graham, Degradation of Di-N-Butyl Phthalate by a Homogeneous Sono–Photo–Fenton Process with in Situ Generated Hydrogen Peroxide, Chemical Engineering Journal, Vol. 240, 2014 pp. 541-547, https://doi.org/10.1016/j.cej.2013.10.087.
[26] A. Babuponnusami, K. Muthukumar, Degradation of Phenol in Aqueous Solution by Fenton, Sono‐Fenton and Sono‐Photo‐Fenton Methods, CLEAN – Soil, Air, Water, Vol. 39, No. 2, 2011, pp. 142-147, https://doi.org/10.1002/clen.201000072.
[27] A. Babuponnusami, K. Muthukumar, A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment, Journal of Environmental Chemical Engineering, Vol. 2,
No. 1 2014, pp. 557-572, https://doi.org/10.1016/j.jece.2013.10.011.
[28] M. Hosseini, M. R. R. Kahkha, A. Fakhri, S. Tahami, M. J. Lariche, Degradation of Macrolide Antibiotics Via Sono or Photo Coupled with Fenton Methods in the Presence of Zns Quantum Dots Decorated Sno(2) Nanosheets. J Photochem Photobiol B, Vol. 185, 2018, pp. 24-31, https://doi.org/10.1016/j.jphotobiol.2018.05.022.
[29] A. Shokri, Application of Sono–Photo-Fenton Process for Degradation of Phenol Derivatives in Petrochemical Wastewater Using Full Factorial Design of Experiment, International Journal of Industrial Chemistry, Vol. 9, No. 9, 2018, pp. 295-303, https://doi.org/10.1007/s40090-018-0159-y.
[30] F. Hasanvandian, M. Moradi, S. A. Samani, B. Kakavandi, S. R. Setayesh, and M. Noorisepehr, Effective Promotion of G–C3n4 Photocatalytic Performance Via Surface Oxygen Vacancy and Coupling with Bismuth-Based Semiconductors Towards Antibiotics Degradation, Chemosphere, Vol. 287, 2022, pp. 132273, https://doi.org/10.1016/j.chemosphere.2021.132273.
[31] A. ElMetwally, G. Eshaq, A. A. Sabagh, F. Yehia, C. Philip, N. Moussa, G. M. ElShafei, Insight into Heterogeneous Fenton-Sonophotocatalytic Degradation of Nitrobenzene Using Metal Oxychlorides, Separation and Purification Technology, Vol. 210, 2019, pp. 452-462, https://doi.org/10.1016/j.seppur.2018.08.029.
[32] K. Jyothi, S. Yesodharan, E. Yesodharan, Sono- Photo-and Sonophotocatalytic Decontamination of Organic Pollutants in Water: Studies on the Lack of Correlation between Pollutant Degradation and Concurrently Formed H2O2, Current Science, 2015, pp. 189-195, http://www.jstor.org/stable/24905704.
[33] Y. Chen, A. Lu, Y. Li, H. Y. Yip, T. An, G. Li, P. Jin, P. K. Wong, Photocatalytic Inactivation of Escherichia Coli by Natural Sphalerite Suspension: Effect of Spectrum, Wavelength and Intensity of Visible Light, Chemosphere, Vol. 84, No. 9, 2011, pp. 1276-1281, https://doi.org/10.1016/j.chemosphere.2011.05.055.
[34] S. Chakma, V. S. Moholkar, Sonochemical Synthesis of Mesoporous Zrfe2O5 and Its Application for Degradation of Recalcitrant Pollutants, Rsc Advances, Vol, 5, No. 66, 2015,
pp. 53529-53542, https://doi.org/10.1039/C5RA06148B.
[35] M. A. N. Khan, M. Siddique, F. Wahid, R. Khan, Removal of Reactive Blue 19 Dye by Sono, Photo and Sonophotocatalytic Oxidation Using Visible Light. Ultrasonics Sonochemistry, Vol. 26, 2015, pp. 370-377,
https://doi.org/10.1016/j.ultsonch.2015.04.012.
[36] N. H. Ince, Ultrasound-Assisted Advanced Oxidation Processes for Water Decontamination. Ultrasonics Sonochemistry, Vol. 40, 2018, pp. 97-103, https://doi.org/10.1016/j.ultsonch.2017.04.009.
[37] A. Takdastan, M. Ravanbakhsh, M. Hazrati, S. Safapour, Removal of Dinitrotoluene from Petrochemical Wastewater by Fenton Oxidation, Kinetics and the Optimum Experiment Conditions. SN Applied Sciences, Vol. 1, 2019, pp. 1-8, https://doi.org/10.1007/s42452-019-0812-x.