Nguyen Truong Thanh, Huynh Viet Trieu, Pham Van Toan, Kim Lavane, Nguyen Tri Khang, Nguyen Vo Chau Ngan

Main Article Content

Abstract

Recently, microplastics (MPs) have become an emerging pollutant. Coagulation-flocculation is a physicochemical method that uses chemical coagulants to remove MPs, but the disadvantages include high cost and chemical residues that are harmful to the environment. Okra mucilage is a low-cost natural coagulant that has been found to be capable of removing MPs from aquatic environments. The objective of this study was to test the environmentally friendly combination of okra mucilage with Polyaluminium chloride (PAC) to remove MPs from surface water. The results showed that okra mucilage did not change the pH of the water and was suitable for the optimal pH range of PAC. The ratio of okra mucilage to PAC was 2:1 (mL:mg) per liter of water. The optimal coagulation time to remove microplastics in surface water was 15 min with a removal efficiency of about 62.96% of MPs. However, depending on the state of the floc/coagulant, whether it is settling or floating, we still need to develop an optimal method to separate the floc/coagulant from the water environment.


 

Keywords: Microplastics, Okra mucilage, Polyaluminum chloride (PAC), removal, surface water.

References

[1] A. Saini, J. G. Sharma, Emerging Microplastic Contamination in Ecosystem: An Urge for Environmental Sustainability, Journal of Applied Biology & Biotechnology, Vol. 10, No. 5, 2022, pp. 66-75, https://doi.org/10.7324/JABB.2022.100508.
[2] A. L. Andrady, Persistence of Plastic Litter in the Oceans, in: M. Bergmann, L. Gutow, M. Klages (Eds.), Marine Anthropogenic Litter, Springer International Publishing AG, Switzerland, 2015, pp. 57-72,
https://doi.org/10.1007/978-3-319-16510-3_3.
[3] A. L. Andrady, Microplastics in the Marine Environment, Marine Pollution Bulletin, Vol. 62, 2011, pp. 1596-1605, https://doi.org/10.1016/j.marpolbul.2011.05.030.
[4] GESAMP, Sources, Fate and Effects of Microplastics in The Marine Environment: Part Two of A Global Assessment, International Maritime Organization, London, Vol. 93, 2016, http://www.gesamp.org/site/assets/files/1275/sources-fate-and-effects-of-microplastics-in-the-marine-environment-part-2-of-a-global-assessment-en.pdf (accessed on: June 4th, 2024).
[5] N. Khalid, M. Aqeel, A. Noman, Microplastics Could be A Threat to Plants in Terrestrial Systems Directly or Indirectly, Environmental Pollution, Vol. 267, 2020, pp. 115653, https://doi.org/10.1016/j.envpol.2020.115653.
[6] C. Junhao, Z. Xining, G. Xiaodong, Z. Li, H. Qi, K. H. M. Siddique, Extraction and Identification Methods of Microplastics and Nanoplastics in Agricultural Soil: A Review, Journal of Environmental Management, Vol. 294, 2021,
pp. 112997, https://doi.org/10.1016/j.jenvman.2021.112997.
[7] S. Babel, A. T. Ta, T. P. L. Nguyen, E. Sembiring, T. Setiadi, A. Sharp, Microplastics Pollution in Selected Rivers from Southeast Asia. Science Bulletin, Vol. 12, No. 1, 2022, pp. 5-17, https://doi.org/10.30852/sb.2022.1741.
[8] J. Martín, J. L. Santos, I. Aparicio, E. Alonso, Microplastics and Associated Emerging Contaminants in the Environment: Analysis, Sorption Mechanisms and Effects of Co-Exposure. Trends in Environmental Analytical Chemistry, Vol. 35, 2022, pp. e00170, https://doi.org/10.1016/j.teac.2022.e00170.
[9] S. Ghosh, J. K. Sinha, S. Ghosh, K. Vashisth, S. Han, R. Bhaskar, Microplastics as an Emerging Threat to The Global Environment and Human Health, Sustainability, Vol. 15, 2023, pp. 10821, https://doi.org/10.3390/su151410821.
[10] IUCN & ISPONRE, Training Course: Microplastics: Environmental Pollution and Potential Impacts on Human Health, in: D.T. An, N. T. Anh, B. T. T. Hien, L. T. V. Nga (Eds.), Microplastic pollution: Case Studies in Vietnam and International Experience, IUCN & ISPONRE, Hanoi, 2021, pp. 5,
https://iucn.org/sites/default/files/content/docum nts/2021/ban_tin_so_2_iucn_eng_2.4.2021_-_final_final.pdf (accessed on: June 4th, 2024) (in Vietnamese).
[11] M. Padervand, E. Lichtfouse, D. Robert, C. Wang, Removal of Microplastics from the Environment. A Review. Environmental Chemistry Letters,
Vol. 18, 2020, pp. 807-828, https://doi.org/10.1007/s10311-020-00983-1.
[12] W. Gao, Y. Zhang, A. Mo, J. Jiang, Y. Liang, X. Cao, D. He, Removal of Microplastics in Water: Technology Progress and Green Strategies, Green Analytical Chemistry, Vol. 3, 2022, pp. 100042, https://doi.org/10.1016/j.greeac.2022.100042.
[13] C. S. Lee , J. Robinson, M. F. Chong, A Review on The Application of Flocculants in Wastewater Treatment, Process Safety and Environmental Protection, Vol. 92, No. 6, 2014, pp. 489-508, https://doi.org/10.1016/j.psep.2014.04.010.
[14] T. K. F. S. Freitas, V. M. Oliveira, M. T. F. De Souza, H. C. L. Geraldino, V. C. Almeida, S. L. Fávaro, J. C. Garcia, Optimization of Coagulation Flocculation Process for Treatment of Industrial Textile Wastewater Using Okra (A. Esculentus) Mucilage As Natural Coagulant, Industrial Crops and Products, Vol. 76, 2015, pp. 538-544, https://doi.org/10.1016/j.indcrop.2015.06.027.
[15] C. S. Lee, M. F. Chong, J. Robinson, E. Binner, Optimisation of Extraction and Sludge Dewatering Efficiencies of Bio-Flocculants Extracted from Abelmoschus Esculentus (Okra). Journal of Environmental Management, Vol. 157, 2015,
pp. 320-325, https://doi.org/10.1016/j.jenvman.2015.04.028.
[16] K. Anastasakis, D. Kalderis, E. Diamadopoulos. Flocculation Behavior of Mallow and Okra Mucilage in Treating Wastewater, Desalination, Vol. 249, 2009, pp. 786-791, https://doi.org/10.1016/j.desal.2008.09.013.
[17] S. Y. Choy, K. M. N. Prasad, T. Y. Wu, R. N. Ramanan, A Review on Common Vegetables and Legumes as Promising Plant-Based Natural Coagulants in Water Clarification, International Journal of Environmental Science and Technology, Vol. 12, No. 1, 2015, pp. 367-390, https://doi.org/10.1007/s13762-013-0446-2.
[18] B. Bolto, J. Gregory, Organic Polyelectrolytes in Water Treatment, Water Research, Vol. 41, No. 11, 2007, pp. 2301-2324, https://doi.org/10.1016/j.watres.2007.03.012.
[19] B. I. Okolo, M. C. Menkiti, P. C. Nnaji, O. D. Onukwuli, C. C. Agu, The Performance of Okra Seed (Hibiscus Esculentus L.) Extract in Removal of Suspended Particles from Brewery Effluent by Coag-Flocculation Process. British Journal of Applied Science & Technology, Vol. 4, No. 34, 2014, pp. 4791-4806, https://doi.org/10.9734/BJAST/2014/9887.
[20] Y. O. Raji, L. Abubakar, S. O. Giwa, A. Giwa, Assessment of Coagulation Efficiency of Okra Seed Extract for Surface Water Treatment, International Journal of Scientific & Engineering Research, Vol. 6, No. 2, 2015, https://core.ac.uk/reader/143491070.
[21] M. Rajalakshmi, S. Sangeetha, Okra Mucilage - Method of Extraction and A Novel Strategy
for Pharmaceutical Drug Delivery System, Journal of Pharmaceutical Negative Results, Vol. 14,
No. 2, 2023, ttps://doi.org/10.47750/pnr.2023.14.S02.291.
[22] K. B. Olesen, N. V. Alst, M. Simon, A. Vianello, F. Liu, J. Vollertsen, Analysis of Microplastics Using FTIR Imaging: Identifying and Quantifying Microplastics in Wastewater, Sediment and Fauna, https://www.researchgate.net/publication/332083136_Analysis_of_Microplastics_using_FTIR_Imaging_Application_Note (accessed on: June 4th, 2024).
[23] S. S. Thakur, S. Choubey, Assessment of Coagulation Efficiency of Moringa Oleifera and Okra for Treatment of Turbid Water, Archives of Applied Science Research, Vol. 6, No. 2, 2014,
pp. 24-30, https://www.scholarsresearchlibrary.com/articles/assessment-of-coagulation-efficiency-of-moringa-oleifera-and-okra-for-treatment-of-turbid-water.pdf (accessed on: June 4th, 2024).
[24] VietChem, What is PAC 31% (Poly Aluminium Chloride) Vietnam (Viet Tri) Water Treatment Chemical?, https://vietchem.com.vn/tin-tuc/hoa-chat-xu-ly-nuoc-pac.html (accessed on: June 4th, 2024) (in Vietnamese).
[25] L .N. Da, L. T. Lien, H. T. T. Ha, V. T. Huong, D. T. Thuy, P. T. M. Huong, L. Q. Thuong, L. T. P. Quynh, Preliminary Determination of Microplastics in Some Domestic Wastewater Samples of Hanoi City, Journal of Science and Technology, Vol. 58, No. 4, 2022, pp. 134-138, https://vjol.info.vn/index.php/dhcnhn/article/view/78201/66657(accessed on: June 4th, 2024) (in Vietnamese).
[26] H. T. Tron, N. H. Than, B. L. T. Khiet, Assessment of the Presence of Microplastics in Domestic Wastewater in Binh Duong Province. Environment Magazine, Vol. 1, 2022, pp. 34-38, https://vjol.info.vn/index.php/vea/article/view/78191 (accessed on: June 4th, 2024) (in Vietnamese).
[27] N. H. N. Y, P. T. T. Linh, V. D. H. Linh, V. V. Minh, L. T. Mai, T. Đ. Mau, T. N. Q. Anh, Microplastics Pollution in Surface Water of Urban Lakes in Danang, Vietnam, Journal of Science and Technology – The University of Danang, Vol. 20, No. 8, 2022, pp. 1859-1531, https://jst-ud.vn/jst-ud/article/view/7803 (accessed on: June 4th, 2024) (in Vietnamese).
[28] D. T. Thuy, N. T. Duong, P. N. Nam, N. H. My, D. T. Oanh, L. T. P. Quynh. B. T. Ha, N. V. Huong, N. D. Thai, N. T. A. Nguyet, C. T. T. Nga, P. T. M. Hanh, H. T. T. Huong, J. Gasperi, E. Strady, Microplastics in Sediments from Urban and Suburban Rivers: Influence of Sediment Properties, Science of the Total Environment,
Vol. 904, 2023, pp. 166330, https://doi.org/10.1016/j.scitotenv.2023.166330.
[29] T. S. Nam, N. T. D. Trang, V. T. P. Thao, T. H. H. My, N. T. N. Dieu, N. Q. Anh, T. T. K. Ly, N. T. Sanh, T. H. M. Ngọc, H. T. Long, N. P. Thinh, Survey of Surface Water Quality in Bung Xang Canal, Ninh Kieu District, Can Tho City, Journal of Agriculture & Rural Development, Vol. 440, 2022, pp. 92-99 (in Vietnamese).
[30] T. Liem, Can Tho: Delay in Handing Over Flood Prevention Reservoir Worth Over 220 Billion VND, 2023, https://baotintuc.vn/kinh-te/can-tho-cham-ban-giao-ho-chong-ngap-hon-220-ty-dong-20230225121049450.htm(accessed on: June 4th, 2024) (in Vietnamese).
[31] People's Committee of Can Tho City, Decision to Approve and Announce The List of Lakes, Canals/Streams That Cannot Be Filled in Can Tho City, Decision No. 3771/QD-UBND dated November 2, 2022, https://www.cantho.gov.vn/wps/portal/home/Trang-chu/chi-tiet/thongbao/3771(accessed on: June 4th, 2024) (in Vietnamese).
[32] E. Kalkan, M. Maskan, Mucilage in Okra: Extraction, Modelling, Optimization and Application, Journal of Food Measurement and Characterization, Vol. 17, 2023, pp. 4812–4822, https://www.researchgate.net/publication/371573240_Mucilage_in_okra_extraction_modelling_optimization_and_application(accessed on: June 4th, 2024).
[33] Y. Zhang, J. Zhang, X. Shen, X. Liu, W. Yang, S. Zhao, Enhanced Coagulation Treatment of Surface Water Benefits from Enteromorpha Prolifera, Journal of Environmental Chemical Engineering, Vol. 10, No. 2, 2022, pp. 107227, https://doi.org/10.1016/j.jece.2022.107227.
[34] Z. Khan, L. T. Thiem, Optimizing Coagulation Process for A Low Turbidity, Low Temperature Water, Electronic Journal of Environmental, Agricultural and Food Chemistry, Vol. 7, 2008, pp. 2599-2610.
[35] Mekong River Commission, Protocols for Microplastic Monitoring in Fish: A Detailed Methodology for Long-Term and Cost-Effective Monitoring of Riverine Plastic Debris Pollution in The Lower Mekong River Basin. Vientiane: MRC Secretariat, 2024, https://www.mrcmekong.org/wp-content/uploads/2024/09/P-MM-Fish.pdf (accessed on: June 4th, 2024).
[36] S. O. Nti, R. Buamah, J. Atebiya, Polyaluminium Chloride Dosing Effects on Coagulation Performance: Case Study, Barekese, Ghana, Water Practice & Technology, Vol. 16, No. 4, 2021,
pp. 1215-1223, https://doi.org/10.2166/wpt.2021.069.
[37] M. Rajalakshmi, S. Sangeetha, Okra Mucilage - Method of Extraction and A Novel Strategy for Pharmaceutical Drug Delivery System. Journal of Pharmaceutical Negative Results, Vol. 14, No. 3, 2023, pp. 2473-2481, https://doi.org/10.47750/pnr.2023.14.S02.291.
[38] P. Sinha, U. Ubaidulla, A. K. Nayak, Okra (Hibiscus Esculentus) Gum–Alginate Blend Mucoadhesive Blends for Controlled Glibenclamide Release, International Journal of Biological Macromolecules, Vol. 72, 2015,
pp. 1069-1075, https://doi.org/10.1016/j.ijbiomac.2014.10.002.
[39] V. Raj, J. J. Shim, J. Lee, Grafting Modification of Okra Mucilage: Recent Findings, Applications, and Future Directions, Carbohydrate Polymers, Vol. 246, 2020, pp. 116653, https://doi.org/10.1016/j.carbpol.2020.116653.
[40] E. Shalaby, Biological Activities and Application of Marine Polysaccharides, Published by Intech, Croatia, 2017, https://pdfs.semanticscholar.org/fd32/76b7bc11fbefe6d420f4bc1583f9c09f75ae.pdf (accessed on: June 4th, 2024).
[41] R. Malviya, Extraction Characterization and Evaluation of Selected Mucilage As Pharmaceutical Excipient. Polimery W Medycynie, Vol. 41, No. 3, 2011, pp. 39-44, https://polimery.umw.edu.pl/pdf/2011/41/3/39.pdf(accessed on: June 4th, 2024).
[42] H. Yokoi, T. Obita, J. Hirose, S. Hayashi, Y. Takasaki, Flocculation Properties of Pectin in Various Suspensions, Bioresource Technology, Vol. 84, No. 3, 2002, pp. 287-290. https://doi.org/10.1016/S0960-8524(02)00023-8.
[43] K. Anastasakis, D. Kalderis, E. Diamadopoulos, Flocculation Behavior of Mallow and Okra Mucilage in Treating Wastewater, Desalination, Vol. 249, No. 2, 2009, pp. 786-791, https://doi.org/10.1016/j.desal.2008.09.013.
[44] M. Agarwal, S. Rajani, A. Mishra, J. Rai, Utilization of Okra Gum for Treatment of Tannery Effluent, International Journal of Polymeric Materials and Polymeric Biomaterials, Vol. 52, 2003, pp. 1049-1057, https://doi.org/10.1080/714975900.