Le Duc Anh, Jenaidullah Batur, Sebghatullah Mudaber

Main Article Content

Abstract

Increasing CO2 emmision leads to global warming. Effective and impotent strategies such as photocatalytic CO2 reduction and utilization was proposed to solve this issue by using sustainable solar energy. We provided a novel, facile, and eco-friendly synthesis strategy to effectively synthesize TiO2-organic composite materials to selectively reduce CO2 to CO. This strategy not only improves TiO2 photocatalytic activity but also shows potential to apply with alternate metal oxide composite catalyst.


 

Keywords: Photocatalyst, Heterogeneous Catalyst, Metal Oxide, TiO2, Composite Materials.

References

[1] J. Batur, S. Mudaber, Differences in Heavy Metals Adsorption on Natural, Modified, and Synthetic Zeolites - A Review, Journal of the Turkish Chemical Society Section A: Chemistry, Vol.10, No. 3, 2023, pp. 845-857, https://doi.org/10.18596/jotcsa.2023.
[2] W. Gao, S. Liang, R. Wang, Q. Jiang,Y. Zhang, Industrial Carbon Dioxide Capture and Utilization: State of the Art and Future Challenges, Chemical Society Reviews, Vol.49, 2020, pp. 8584-8686, https://doi.org/10.1039/D0CS00025F.
[3] D. G. Yu, L. N. He, Introduction to CO2 utilisation. Green Chemistry, Vol. 23, 2021, pp. 3499-3501, https://doi.org/10.1039/D1GC90036F.
[4] H. Sun, A. Wang, J. Zhai, J. Huang, Y. Wang, Impacts of global warming of 1.5 °C and 2.0 °C on Precipitation Patterns in China by Regional Climate Model (COSMO-CLM), Atmospheric Research Vol. 203, 2018, pp. 83-94, https://doi.org/10.1016/j.atmosres.2017.10.024.
[5] Y. Li, H. Tao, B. Su, Z.W. Kundzewicz, T. Jiang. Impacts of 1.5 °C and 2 °C Global Warming on Winter Snow Depth in Central Asia, Science of the Total Environment, Vol. 651, 2019, pp. 2866-2873, https://doi.org/10.1016/j.atmosres.2017.10.024.
[6] M. Iwase, K. Yamada, T. Kurisaki, O.O. Prieto-Mahaney, B. Ohtani, H. Wakita, Visible-Light Photocatalysis with Phosphorus-Doped Titanium (IV) Oxide Particles Prepared Using a Phosphide Compound, Applied Catalysis B: Environmental Vol, 132, 2013, pp.39-44, https://doi.org/10.1016/j.apcatb.2012.11.014.
[7] E. Doustkhah, M. H. N. Assadi, K. Komaguchi, N. Tsunoji, M. Esmat, In Situ Blue Titania Via Band Shape Engineering for Exceptional Solar H2 Production in Rutile TiO2, Applied Catalysis B: Environmental, Vol. 297, 2021, pp. 120380, https://doi.org/10.1016/j.apcatb.2021.120380.
[8] Z. Wang, J. Song, Y. Xu, W. Chen, M. Zhang, Treatment of MB wastewater with a Fe– RGO/TiO2/PTFE photocatalytic Composite Membrane, New Journal of Chemistry, Vol. 12, 2024, pp. 5199-5211, https://doi.org/10.1016/j.hazadv.2024.100414.
[9] G. Guidetti, E. A. A. Pogna, L. Lombardi, F. Tomarchio, I. Polishchuk, Photocatalytic Activity of Exfoliated Graphite–TiO2 Nanoparticle Composites, Nanoscale, Vol. 11, 2019, pp. 19301-19314, https://doi.org/10.1039/C9NR06760D.
[10] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, Light-Induced Amphiphilic Surfaces, Nature, Vol. 388, 1997, pp. 431-432, https://doi.org/10.1038/41233.
[11] S. Takagi, S. Makuta, A. Veamatahau, Y. Otsuka, Y. Tachibana, Organic/Inorganic Hybrid Electrochromic Devices Based on Photoelectrochemically Formed Polypyrrole/TiO2 Nanohybrid Films, Journal of Materials Chemistry, Vol. 22, 2012, pp. 22181-22189, https://doi.org/10.1039/C2JM33135G.
[12] J. Tang, J. R. Durrant, D. R. Klug, Mechanism of Photocatalytic Water Splitting in TiO2. Reaction of Water with Photoholes, Importance of Charge Carrier Dynamics, and Evidence for Four-Hole Chemistry, Journal of the American Chemical Society, Vol. 130, 2008, pp. 13885-13891, https://doi.org/10.1021/ja8034637.
[13] O. Mekasuwandumrong, N. Jantarasorn, J. Panpranot, M. Ratova, P. Kelly, P. Praserthdam, Synthesis of Cu/TiO2 Catalysts by Reactive Magnetron Sputtering Deposition and Its Application for Photocatalytic Reduction of CO2 and H2O to CH4, Ceramics International, Vol. 45, 2019, pp. 22961-22971, https://doi.org/10.1016/j.ceramint.2019.07.340.
[14] Z. Guo, L. Zhang, H. Jiu, D. Liang, C. Wang, TiO2-Modified Two-Dimensional Composite of Nitrogen-Doped Molybdenum Trioxide Nanosheets as a High-performance Anode for Lithium-ion Batteries, Dalton Transactions, Vol. 53, 2024, pp. 5427-5434, https://doi.org/10.1039/D3DT04176J.
[15] F. Dong, S. Guo, H. Wang, X. Li, Z. Wu. Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO2 Nanomaterials Prepared by a Green Synthetic Approach, the Journal of Physical Chemistry C, Vol. 115, 2011, pp. 13285-13292, https://doi.org/10.1021/jp111916q.
[16] K. Arifin, R. M. Yunus, L. J. Minggu, M. B. Kassim, Improvement of TiO2 Anotubes for Photoelectrochemical Water Splitting: Review. International Journal of Hydrogen Energy, Vol. 46, 2021, pp. 4998-5024, https://doi.org/10.1016/j.ijhydene.2020.11.063.
[17] G. Liu, P. Niu, L. Yin, H. M. Chen, α-Sulfur Crystals as a Visible-Light-Active Photocatalyst, Journal of the American Chemical Society, Vol. 134, 2012, pp. 9070-9073, https://doi.org/10.1021/ja302897b.
[18] G. Liu, P. Niu, H. M. Cheng, Visible-Light-Active Elemental Photocatalysts, Chem Phys Chem, Vol. 14, 2013, pp. 885-892, https://doi.org/10.1002/cphc.201201075.
[19] S. A. Ansari, M. H. Cho, Highly Visible Light Responsive, Narrow Band Gap TiO2 Nanoparticles Modified by Elemental Red Phosphorus for Photocatalysis and Photoelectrochemical Applications, Scientific Reports, Vol. 6, 2016, pp. 25405, https://doi.org/10.1038/srep25405.
[20] N. O. Gopal, M. H. Basha, TiO2 Nano-Flakes with High Aactivity Obtained from Phosphorus Doped TiO2 Nanoparticles by Hydrothermal Method, Ceramics International, Vol. 44, 2018, pp. 22129-22134, https://doi.org/10.1016/j.ceramint.2018.08.325.
[21] R. Li, J. Batur, H. Bian, Y. J. Wang, Z. Duan, Green and Facile Fabrication of Metal Oxide/Red Phosphorus Composite Catalysts for CO2 Photoreduction, ACS Sustainable Chemistry & Engineering, Vol. 10, 2022, pp. 8658-8668, https://doi.org/10.1021/acssuschemeng.2c02723.
[22] A. Zhou, Y. Dou, C. Zhao, J. Zhou, X. Q. Wu, J. R. Li, A Leaf-branch TiO2/carbon@MOF Composite for Selective CO2 Photoreduction, Applied Catalysis B: Environmental, Vol. 264, 2020, pp. 118519, https://doi.org/10.1016/j.apcatb.2019.118519.
[23] Q. Guo, L. Fu, T. Yan, W. Tian, D. Ma, Improved Photocatalytic Activity of Porous ZnO Nanosheets by Thermal Deposition Graphene-Like g-C3N4 for CO2 Reduction with H2O Vapor, Applied Surface Science, Vol. 509, 2019, pp. 144773, https://doi.org/10.1016/j.apsusc.2019.144773.
[24] X. Huang, W. Gu, S. Hu, Y. Hu, L. Zhou, Phosphorus-doped Inverse Opal g-C3N4 for Efficient and Selective CO Generation from Photocatalytic Reduction of CO2, Catalysis Science & Technology, Vol. 10, 2020, pp. 3694-3670, https://doi.org/10.1039/D0CY00457J.