Le Thi Hoang Oanh, Dang Thu Trang, Dang Thi Minh Phuong, Pham Van Quang, Luu Minh Loan, Nguyen Huu Huan, Tran Thi Hong

Main Article Content

Abstract

Chicken feather waste, a byproduct of the slaughtering process, may pollute the environment and pose a risk to human health. However, it is a potential source of organic nitrogen for agricultural application, such as animal feed and fertilizers. In Vietnam, Me Linh district, a large flower, vegetable and fruit growing area, is also among the top of fertilizer use in Hanoi city, where the demand for organic fertilizer is high. This study was carried out to evaluate the quality of the chicken feather waste in Me Linh district for further agricultural application. Here we focused on the chicken feather waste distribution, generation rate, bulk density, pH, and extractables. The measured elemental composition of chicken feather waste was similar to previous studies.  They are rich in nitrogen (TN ~ 12%), have high sulfur content (TS > 2%), and do not contain heavy metals, which are strictly regulated in QCVN 01-189/2019-BNNPTNT as for bio-organic fertilizer quality standards.

Keywords: Chicken feather waste, keratin, Me Linh, biological decomposition.

References

[1] B. B. Adhikari, M. Chae, D. C. Bressler, Utilization of Slaughterhouse Waste in Value-added Applications: Recent Advances in the Development of Wood Adhesives, Polymers,
Vol. 10, 2018, pp. 176,QQQQQQQQQQQQQQQ https://doi.org/10.3390/polym10020176.
[2] V. Mozhiarasi, T. S. Natarajan, Slaughterhouse and Poultry Wastes: Management Practices, Feedstocks for Renewable Energy Production, and Recovery of Value Added Products, Biomass Conv. Bioref., Vol. 15, 2025, pp. 1705-1728, https://doi.org/10.1007/s13399-022-02352-0.
[3] R. R. D. Silva, Keratinases as an Alternative Method Designed to Solve Keratin Disposal on The Environment: Its Relevance on Agricultural and Environmental Chemistry, J Agric Food Chem, Vol. 66, 2018, pp. 7219-7221,KKKKKKKKKKK https://doi.org/10.1021/acs.jafc.8b03152.
[4] E. Salminen, J. Rintala, Anaerobic Digestion of Organic Solid Poultry Slaughterhouse Waste – A Review, Bioresource Technology, Vol. 83, 2002, pp. 13-26, https://doi.org/10.1016/S0960-8524(01)00199-7.
[5] J. Qiu, C. Wilkens, K. Barrett, A. S. Meyer, Microbial Enzymes Catalyzing Keratin Degradation: Classifcation, Structure, Function, Biotechnol Adv, Vol. 44, 2020, pp. 107607, https://doi.org/10.1016/j.biotechadv.2020.107607.
[6] Livestock Vietnam, Overview of Poultry Livestock in Period 2018-2023 (P1), Journal of Livestock Vietnam, 2023,3333333333333333333333333333
https://nhachannuoi.vn/tong-quan-ve-nganh-chan-nuoi-gia-cam-giai-doan-2018-2022-p1/ (accessed on: July 25th, 2024) (in Vietnamese).
[7] J. C. Costa, S. G. Barbosa, D. Z. Sousa, Effects of Pre-treatment and Bioaugmentation Strategies on the Anaerobic Digestion of Chicken Feathers, Bioresour Technol, Vol. 120, 2012, pp. 114-119, https://doi.org/10.1016/j.biortech.2012.06.047.
[8] Y. Xia, D. I. Massé, T. A. McAllister, Anaerobic Digestion of Chicken Feather with Swine Manure or Slaughterhouse Sludge for Biogas Production, Waste Manage, Vol. 32, No. 3, 2012, pp. 404-409, https://doi.org/10.1016/j.wasman.2011.10.024.
[9] S. A. Asheh, F. Banat, D. A. Rousan, Beneficial Reuse of Chicken Feathers in Removal of Heavy Metals from Wastewater, J Clean Prod, Vol. 11, 2003, pp. 321-326, https://doi.org/10.1016/S0959-6526(02)00045-8.
[10] C. A. S. Moreno, E. C. González, M. Z. S. Leos, Use and Treatment of Chicken Feathers as A Natural Adsorbent for The Removal of Copper in Aqueous Solution, J Environ Health Sci Engineer, Vol. 19, No. 1, 2021, pp 707-720,ssssssssssssssssss https://doi.org/10.1007/s40201-021-00639-4.
[11] N. Reddy, L. Chen, Y. Yang, Biothermoplastics from Hydrolyzed and Citric Acid Crosslinked Chicken Feathers, Mater Sci Eng C Mater Biol Appl, Vol. 33, No. 3, 2013, pp. 1203-1208, https://doi.org/10.1016/j.msec.2012.12.011.
[12] L. Hang, M. Linh District Develops Effectively Specialized Production Areas, Capital Labour Newspaper, 2023, https://laodongthudo.vn/huyen-me-linh-phat-trien-co-hieu-qua-cac-vung-san-xuat-chuyen-canh-162228.html. (accessed on: July 25th, 2024) (in Vietnamese).
[13] General Statistic Office, 2024,ddddddddddddddd
https://www.gso.gov.vn/px-web2/?pxid=V0650& theze=N%C3%B4ng%2C%20l%C3%A2m%20 nghi%E1%BB%87p%20v%C3%A0%20th%E1%BB%A7y%20s%E1%BA%A3n (accessed on: July 25th, 2024) (in Vietnamese).
[14] N. Nga, Changing the Habit of Using Fertilizers and Pesticides, Capital Women Electronic Newspater, 2020, https://baophunuthudo.vn/kinh-te-xa-hoi/thay-doi-thoi-quen-su-dung-phan-bon-thuoc-tru-sau-52783.html (accessed on: July 25th, 2024) (in Vietnamese).
[15] N. Thu, Me Linh: Promote Reuse and Processing Organic Waste, Agricultural By-products into Environmentally Friendly Raw Materials and Fuel, Me Linh Distric Electronic Information Portal, 2022, https://melinh.hanoi.gov.vn/me-linh-thuc-day-tai-su-dung-che-bien-chat-thai-huu-co-phu-pham-nong-nghiep-thanh-nguyen-lieu-nhien-lieu-than-thien-voi-moi-truong-173221006150228869. htm (accessed on: July 25th, 2024) (in Vietnamese).
[16] Agricultural Service Center, People's Committee of Me Linh District, List of Animal Slaughter Facilities and Points in March, 2023 (in Vietnamese).
[17] QCVN 01-189: 2019/BNNPTNT, National Technical Regulation on Fertilizer Quality (in Vietnamese).
[18] R. T. Haug, The Practical Handbook of Compost Engineering, Taylor & Fransis, New York, 1993.
[19] R. Avidov, V. S. Varma, I. Saadi, A. Hanan, I. Yoselevich, A. Lublin, L. Chen, Y. Laor, Physical and Chemical Indicators of Transformation of Poutry Carcass Parts and Broiler Litter During Short Term Thermophilic Composting, Waste Manag, Vol. 119, 2021, pp. 202-214,kkkkkkkkkkk https://doi.org/10.1016/j.wasman.2020.09.040.
[20] M. S. Jain, S. Paul, A. S. Kalamdhad, Kinetics and Physics During Composting of Various Organic Wastes: Statistical Approach to Interpret Compost Application Feasibility, J Clean Prod, Vol. 255, 2020, pp. 120324,sssssssssssssssssssssssssssssssss https://doi.org/10.1016/j.jclepro.2020.120324.
[21] A. Nurdiawati, B. Nakhshiniev, I. N. Zaini, N. Saidov, F. Takahashi, K. Yoshikawa, Characterization of Potential Liquid Fertilizers Obtained by Hydrothermal Treatment of Chicken Feathers. Environmental Progress & Sustainable Energy,Vol. 37, No. 1, 2017, 8pp,sssssssssssssssss https://doi.org/10.1002/ep.12688.
[22] T. Tesfaye, B. Sithole, D. Ramjugernath, V. Chunilall, Valorisation of Chicken Feathers: Characterisation of Chemical Properties, Waste Manag,Vol. 68, 2017, pp. 626-635,gggggggggggg https://doi.org/10.1016/j.wasman.2017.06.050.
[23] H. L. Stilborn, E. T. Moran, F. M. Gous, M. D. Harrison, Effect of Age on Feather Amino Acid Content in Two Broiler Strain Crosses and Sexes. J. Appl. Poultry Res., Vol. 6, 1997, pp. 205-209, https://doi.org/10.1093/japr/6.2.205.
[24] T. K. Kowalska, J. Bohacz, Biodegradation of Keratin Waste: Theory and Practical Aspects. Waste Manag. Vol. 31, No. 8, 2011, pp. 689-1701, https://doi.org/10.1016/j.wasman.2011.03.024.
[25] G. A. Ogunwande, J. A. Osunade, K. O. Adekalu, L. A. O. Ogunjimi, Nitrogen Loss in Chicken Litter Compost as Affected by Carbon to Nitrogen Ratio and Turning Frequency, Bioresour Technol,
Vol. 99, 2008, pp. 7495-7503,gggggggggggggggg http://doi.org/10.1016/j.biortech.2008.02.020.
[26] T. Karak, I. Sonar, R. K. Paul, S. Das, R. K. Boruah, A. K. Dutta, D. K. Das, Composting of Cow Dung and Crop Eesidues Using Termite Mounds as Bulking Agent, Bioresour Technol, Vol. 169, 2014, pp. 731-741,cccccccccccccccccccc https://doi.org/10.1016/j.biortech.2014.06.110.
[27] S. P. Wang, X. X. Li, Z. Y. Sun, W. L. Shuai, Z. Y. Xia, C. Y. Xie, M. Gou, Y. Q. Tang, Evaluation of Physicochemical Properties, Bacterial Community, and Product Fertility During Rice Straw Composting Supplemented with Different Nitrogen-rich Wastes, Bioresour Technol,
Vol. 369, 2023, pp. 128462,cccccccccccccccccccc https://doi.org/10.1016/j.biortech.2022.128462.
[28] A. N. Mohammed, An Alternative Approach for Controlling Bacterial Pathogens in Liquid and Solid Poultry Waste Using Calcium Hypochlorite Ca(OCl)2 Disinfectant-based Silver Nanoparticles, Scientific Reports, Vol. 12, 2022, pp. 19733, https://www.nature.com/articles/s41598-022-24203-8 (accessed on: July 25th, 2024).