Nguyen Thi Quynh Anh, Nguyen Thi Ngan, Lai Quang Trung, Doan Dinh Hung, Dinh Mai Van

Main Article Content

Abstract

Silicon (Si) is a beneficial element for plant growth, particularly in monocotyledons like corn (Zea mays). In upland agroecosystems, where soil weathering and erosion rates are high, the role of corn in the silicon cycle is crucial. This study evaluates the contribution of corn to silicon dynamics by analyzing Si concentrations in plant tissues and various soil Si fractions across 24 upland sites in Northern Vietnam. Our results indicate that corn leaves accumulate more Si (x̅ = 10.9 g kg⁻¹) than stems (x̅ = 4.28 g kg⁻¹), highlighting leaves as the primary sink of Si within the plant. In soils, amorphous NaOH-extractable Si was 6.35 g kg⁻¹, while exchangeable Si and water-soluble Si had low average content (x̅ = 0.01 g kg⁻¹, x̅ = 0.03 g kg⁻¹, respectively), reflecting varying degrees of bioavailability. Spearman correlation analyses revealed positive relationships between exchangeable Si fractions in soil and plant Si uptake, especially in leaves. These findings emphasize the role of corn in sustaining Si fluxes in upland agriculture and underline the need for soil management practices that maintain Si availability for long-term ecosystem stability.


 

Keywords: Corn; silicon cycle; mountainous agroecosystems; soil silicon; plant uptake.

References

[1] J. F. Ma, N. Yamaji, Silicon Uptake and Accumulation in Higher Plants, Trends Plant Science, Vol. 11, No. 8, 2006, pp. 392-397, https://doi.org/10.1016/j.tplants.2006.06.007.
[2] E. Epstein, L. E. Datnoff, G. H. Snyder, P. S. Korndörfer, Chapter 1 Silicon in Plants: Facts vs. Concepts, Silicon in Agriculture, Eds., Elsevier, Vol. 8, 2001, pp. 1-15, https://doi.org/10.1016 /S0928-3420(01)80005-7.
[3] D. Puppe and M. Sommer, Experiments, Uptake Mechanisms, and Functioning of Silicon Foliar Fertilization - A Review Focusing on Maize, Rice, and Wheat, Advances in Agronomy, Vol. 152, 2018, pp. 1-49, https://doi.org/10.1016/bs.agron-.2018.07.003.
[4] Y. Liang, M. Nikolic, R. Bélanger, H. Gong, A. Song, Silicon in Agriculture: From Theory to Practice, Springer, Dordrecht, 2015, pp. 1-235, https://doi.org/10.1007/978-94-017-9978-2.
[5] M. N. Nguyen, D. Stefan, M. Andrew, P.V. Quang, H. N. Anh. D. T. N. Than, N. T. Van, N. M. Khai, N. X. Huan, N. T. Nghia, Phytolith Content in Vietnamese Paddy Soils in Relation to Soil Properties, Geoderma, Vol. 333, 2019, pp. 200-213, https://doi.org/10.1016/j.geoderma.2018.07.027.
[6] [A. L. Khan, Silicon: A Valuable Soil Element for Improving Plant Growth and CO2 Sequestration, Journal of Advanced Research, Vol. 71, 2025,
pp. 43-54, https://doi.org/10.1016/j.jare.2024.05.027.
[7] W. Guo, Y. G. Zhu, W. J. Liu, Y. C. Liang, C. N. Geng, S. G. Wang, Is The Effect of Silicon on Rice Uptake of Arsenate (AsV) Related to Internal Silicon Concentrations, Iron Plaque and Phosphate Nutrition, Environmental Pollution., Vol. 148, 2007, pp. 251,
https://doi.org/10.101 6/j.envpol .2006.10.021.
[8] L. Rezakhani, B. Motesharezadeh, M. M. Tehrani, H. Etesami, H. M. Hosseini, The Effect of Silicon Fertilization and Phosphate-Solubilizing Bacteria on Chemical Forms of Silicon and Phosphorus Uptake by Wheat Plant in a Calcareous Soil, Plant Soil, Vol. 477, No. 1-2, 2022, pp. 259-280, https://doi.org/10.1007/ s11104-021-05274-4.
[9] J. F. Ma, E. Takahashi, Silicon Sources for Agriculture, Soil, Fertilizer, and Plant Silicon Research in Japan, Elsevier, Amsterdam, 2002,
pp. 5-26, https://doi.org/10.1016/B978-0-444-51166-9.X5000-3.
[10] M. Okrusch, H. E. Frimmel, Weathering and Mineral Formation in Soils, Springer, Berlin, 2020, pp. 405-415, https://doi.org/10.1007/978-3-662-57316-7_24.
[11] B. J. Ermish, S. A. Boomgarden, Identifying Water Availability with Maize Phytoliths in Range Creek Canyon, Utah, Journal of Archaeological Science: Report, Vol. 41, 2022, 103267, https://doi.org/10.1016/j.jasrep.2021.103267.
[12] J. Yanai, H. Taniguchi, A. Nakao, Evaluation of Available Silicon Content and Its Determining Factors of Agricultural Soils in Japan, Soil Science and Plant Nutrition, Vol. 62, No. 5-6, 2016,
pp. 511-518, https://doi.org/10.1080/00380768.2016. 1232601.
[13] M. I. R. Khan, F. Ashfaque, H. Chhillar, M. Irfan, N. A. Khan, The Intricacy of Silicon, Plant Growth Regulators and Other Signaling Molecules for Abiotic Stress Tolerance: An Entrancing Crosstalk between Stress Alleviators, Plant Physiology and Biochemistry, Vol. 162, 2021, pp. 36-47, https://doi.org/10.1016/j.plaphy.2021.02.0 24.
[14] D. W. Nelson, L. E. Sommers, Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America Book, Series No.5, 1996,
pp. 961-1010, https://doi.org/10.2136/sssabookser5.3.
[15] P. P. Nayak, S. Nandi, A. K. Datta, Comparative Assessment of Chemical Treatments on Extraction Potential of Commercial Grade Silica from Rice Husk, Engineering Reports, Vol. 1,
No. 2, 2019, pp. 12035,
https://doi.org/10.1002/ eng2.12035.
[16] B. S. Tubaῆa, J. R. Heckman, Silicon in Soils and Plants, Silicon and Plant Diseases, Springer International Publishing, 2015, pp. 7-51, https://doi.org/10.1007/978-3-319-22930-0_2.
[17] A. Georgiadis, D. Sauer, L. Herrmann, J. Breuer, M. Zarei, K. Stahr, Development of a Method for Sequential Si Extraction from Soils, Geoderma, Vol. 209-210, 2013, pp. 251-261, https://doi.org/ 10.1016/j.geoderma.2013.06.023.
[18] E. Epstein, The Anomaly of Silicon in Plant Biology, Proceedings of the National Academy of Sciences of the United States of America, Vol. 91, 1994, pp. 11, https://doi.org/10.1073/pnas.91.1.11.
[19] H. T. Nguyen, A. T. Q. Nguyen, T. T. T. Vu, L. T. Duong, M. N. Nguyen, Potassium in Silicon-Rich Biomass Wastes: A Perspective of Slow-Release Potassium Sources, Biofuels, Bioproducts & Biorefining, Vol. 16, No. 5, 2022, pp. 1159-1164, https://doi.org/10.1002/bbb.2361.
[20] R. Putra, J. Waterman, U. Mathesius, D. Wojtalewicz, J. Powell, S. Hartley, S. Johnson, Benefits of silicon-enhanced root nodulation in a model legume are contingent upon rhizobial efficacy, Plant and Soil, Vol. 477, No. 1-2, 2022, pp. 201-217, https://doi.org/10.1007/s11104-022-05358-9.
[21] C. Keller, F. Guntzer, D. Barboni, J. Labreuche, J. D. Meunier, Impact of Agriculture on The Si Biogeochemical Cycle: Input from Phytolith Studies, Comptes Rendus Geoscience, Vol. 344, No. 11-12, 2012, pp. 739-746, https://doi.org/ 10.1016/j.crte.2012.10.004.
[22] J. D. Meunier, J. Riotte, J. J. Braun, M. Sekhar, F. Chalie, D. Barboni, L. Saccone, Controls of DSi in Streams and Reservoirs Along the Kaveri River, South India, Science of the Total Environment, Vol. 502, 2015, pp. 103-113, https://doi.org/10. 1016/j.scitotenv.2014.07.107.
[23] T. Klotzbücher, A. Klotzbücher, K. Kaiser, I. Merbach, R. Mikutta, Impact of Agricultural Practices on Plant-Available Silicon, Geoderma, Vol. 331, 2018, pp. 15-17, https://doi.org/10.1016 /j.geoderma.2018.06.011.
[24] J. T. Cornelis, B. Delvaux, Soil Processes Drive the Biological Silicon Feedback Loop, Functional Ecology, Vol. 30, No. 8, 2018, pp. 1298-1310, https://www.jstor.org/stable/48582226.
[25] D. Ning, A. Qin, Z. Lin, A. Duan, J. Xiao, J. Zhang, L. Zugui, Z. Ben, L. Zhanjun, Silicon-Mediated Physiological and Agronomic Responses of Maize to Drought Stress Imposed at The Vegetative and Reproductive Stages, Agronomy, Vol. 10, No. 8, 2020, pp. 1136, https://doi.org/10.3390/agronomy10081136.
[26] O. Katz, D. Puppe, D. Kaczorek, N. B. Prakash, J. Schaller, Silicon in The Soil–Plant Continuum: Intricate Feedback Mechanisms within Ecosystems, Plants, Vol 10, No. 4, 2021, pp. 652, https://doi.org/10.3390/plants10040652.
[27] J. Schaller, D. Puppe, D. Kaczorek, R. Ellerbrock, M. Sommer, Silicon Cycling in Soils Revisited, Plants, Vol. 10, No. 2, 2021, pp. 1-36, https://doi.org/10.3390/plants10020295.
[28] B. Sharmar, K. C. Kumawat, S. Tiwari, A. Kumar, R. A. Dar, U. Singh, M. Cardinale, Silicon and Plant Nutrition - Dynamics, Mechanisms of Transport and Role of Silicon Solubilizer Microbiomes in Sustainable Agriculture: A review, Pedosphere, Vol. 33, No. 4, 2023, pp. 534-555, https://doi.org/10.1016/j.pedsph.2022.11.004.
[29] R. J. Haynes, What Effect Does Liming Have on Silicon Availability in Agricultural Soils?, Geoderma, Vol. 337, 2019, pp. 375-383, https://doi.org/10.1016/j.geoderma.2018.09.026.
[30] S. B. Tubana, T. Babu, L. E. Datnoff, A Review of Silicon in Soils and Plants and Its Role in US Agriculture: History and Future Perspectives, Soil Science, Vol. 181, No. 9/10, 2016, pp. 394-411, https://doi.org/10.1097/SS.0000000000000179.
[31] J. F. Ma, N. Yamaji, A Cooperative System of Silicon Transport in Plants, Trends Plant Science, Vol. 20, No. 7, 2015, pp. 435-442, https://doi.org/10.1016/j.tplants.2015.04.007.
[32] J. Schaller, D. Puppe, Heat Improves Silicon Availability in Mineral Soils, Geoderma,
Vol. 386, 2021, pp. 114909, https://doi.org/10.1016/j.geoderma.2020.114909.