Palynological characteristics of Iabang lake sediments
Main Article Content
Abstract
This paper presents the first pollen and spore record in lake sediment from the Tay Nguyen area, Vietnam, spanning the last 22.5 cal kyr BP. The analysis of spores and pollen from a core sample taken at a depth of 17.7 meters in Iabang Lake, Dak Doa District, Gia Lai Province, allows for the reconstruction of paleoclimate conditions over the past 22.5 cal Kyr BP. The climate conditions in the Iabang Lake area have changed from temperate to subtropical and then to tropical conditions. Findings compare favorably with other regional paleoclimate data. The record of spores and pollen in the lake sediments also indicates a period of dry and cold conditions interspersed with subtropical climate at about 17.1 to 16.1 cal kyr BP, which corresponds to the Heinrich 1 event.
References
[2] J. C. C. Viana et al., “A late Holocene paleoclimate reconstruction from Boqueirão Lake sediments, northeastern Brazil,” Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 415, pp. 117–126, Dec. 2014, doi: 10.1016/j.palaeo.2014.07.010.
[3] Y. Sun et al., “A novel procedure for quantitative regional paleoclimatic reconstruction using surface pollen assemblages,” Quaternary Science Reviews, vol. 240, p. 106385, Jul. 2020, doi: 10.1016/j.quascirev.2020.106385.
[4] K. R. Laird, S. C. Fritz, E. C. Grimm, and P. G. Mueller, “Century scale paleoclimatic reconstruction from Moon Lake, a closed‐basin lake in the northern Great Plains,” Limnology & Oceanography, vol. 41, no. 5, pp. 890–902, Jul. 1996, doi: 10.4319/lo.1996.41.5.0890.
[5] G. S. Kong, K.-O. Kim, and S.-P. Kim, “Characteristics of the East Asian summer monsoon in the South Sea of Korea during the Little Ice Age,” Quaternary International, vol. 286, pp. 36–44, Feb. 2013, doi: 10.1016/j.quaint.2012.07.022.
[6] M. Morellón et al., “Climate changes and human activities recorded in the sediments of Lake Estanya (NE Spain) during the Medieval Warm Period and Little Ice Age,” J Paleolimnol, vol. 46, no. 3, pp. 423–452, Oct. 2011, doi: 10.1007/s10933-009-9346-3.
[7] Y. Axford, Á. Geirsdóttir, G. H. Miller, and P. G. Langdon, “Climate of the Little Ice Age and the past 2000 years in northeast Iceland inferred from chironomids and other lake sediment proxies,” J Paleolimnol, vol. 41, no. 1, pp. 7–24, Jan. 2009, doi: 10.1007/s10933-008-9251-1.
[8] S. C. Fritz, “Deciphering climatic history from lake sediments,” J Paleolimnol, vol. 39, no. 1, pp. 5–16, Jan. 2008, doi: 10.1007/s10933-007-9134-x.
[9] C.-Y. Huang et al., “Deep sea and lake records of the Southeast Asian paleomonsoons for the last 25 thousand years,” Earth and Planetary Science Letters, vol. 146, no. 1–2, pp. 59–72, Jan. 1997, doi: 10.1016/S0012-821X(96)00203-8.
[10] P. J. Noble et al., “Holocene paleoclimate history of Fallen Leaf Lake, CA., from geochemistry and sedimentology of well-dated sediment cores,” Quaternary Science Reviews, vol. 131, pp. 193–210, Jan. 2016, doi: 10.1016/j.quascirev.2015.10.037.
[11] A. Rahman et al., “Late Holocene paleoclimate reconstruction of northern Taiwan using a multiproxy approach in the Dream Lake sediment core,” Quaternary International, vol. 693, pp. 27–37, May 2024, doi: 10.1016/j.quaint.2024.02.013.
[12] W. J. D’Andrea et al., “Mild Little Ice Age and unprecedented recent warmth in an 1800 year lake sediment record from Svalbard,” Geology, vol. 40, no. 11, pp. 1007–1010, Nov. 2012, doi: 10.1130/G33365.1.
[13] L. Cheng and W. Ye, “Multi-proxy evidence for paleoclimate evolution performed on a paleolake sediment core in the East Asian Monsoon Region,” Environ Earth Sci, vol. 78, no. 3, p. 92, Feb. 2019, doi: 10.1007/s12665-019-8107-5.
[14] M. J. Leng and J. D. Marshall, “Palaeoclimate interpretation of stable isotope data from lake sediment archives,” Quaternary Science Reviews, vol. 23, no. 7–8, pp. 811–831, Apr. 2004, doi: 10.1016/j.quascirev.2003.06.012.
[15] T. M. Cronin, Paleoclimates: understanding climate change past and present. New York: Columbia University Press, 2010.
[16] A. Kaushik et al., “Paleoclimatic reconstruction of northwest Himalaya since CE 475 using lake sediments from Tadag Taal, Kumaun, India,” Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 619, p. 111544, Jun. 2023, doi: 10.1016/j.palaeo.2023.111544.
[17] S. C. Fritz, “Paleolimnological records of climatic change in North America,” Limnology & Oceanography, vol. 41, no. 5, pp. 882–889, Jul. 1996, doi: 10.4319/lo.1996.41.5.0882.
[18] C. Butruille, V. R. Krossa, C. Schwab, and M. Weinelt, “Reconstruction of mid- to late-Holocene winter temperatures in the Skagerrak region using benthic foraminiferal Mg/Ca and δ18 O,” The Holocene, vol. 27, no. 1, pp. 63–72, Jan. 2017, doi: 10.1177/0959683616652701.
[19] A. Lone, A. A. Fousiya, R. Shah, and H. Achyuthan, “Reconstruction of Paleoclimate and Environmental Fluctuations Since the Early Holocene Period Using Organic Matter and C:N Proxy Records: A Review,” Journal of the Geological Society of India, vol. 91, no. 2, pp. 209–214, Feb. 2018, doi: 10.1007/s12594-018-0837-6.
[20] O. Das et al., “Reconstruction of paleostorms and paleoenvironment using geochemical proxies archived in the sediments of two coastal lakes in northwest Florida,” Quaternary Science Reviews, vol. 68, pp. 142–153, May 2013, doi: 10.1016/j.quascirev.2013.02.014.
[21] H. Đào-Trung et al., “Diatom-based indications of an environmental regime shift and droughts associated with seasonal monsoons during the Holocene in Biển Hồ maar lake, the Central Highlands, Vietnam,” The Holocene, vol. 34, no. 7, pp. 941–955, July 2024, doi: 10.1177/09596836241236342.
[22] H. Nguyễn-Văn et al., “Environmental history recorded over the last 70 years in Biển Hồ maar sediment, Central Highlands of Vietnam,” Quaternary International, vol. 621, pp. 84–100, May 2022, doi: 10.1016/j.quaint.2020.05.013.
[23] A. E. K. Ojala et al., “High-resolution ∼55 ka paleomagnetic record of Biển Hồ maar lake sediment from Vietnam in relation to detailed 14C and 137Cs geochronologies,” Quaternary Geochronology, vol. 76, p. 101443, June 2023, doi: 10.1016/j.quageo.2023.101443.
[24] H. Nguyễn-Văn et al., “Paleoenvironmental potential of lacustrine sediments in the Central Highlands of Vietnam: a review on the state of research,” Vietnam J. Earth Sci., Apr. 2023, doi: 10.15625/2615-9783/18281.
[25] T. Nguyễn-Đình et al., “A high-resolution, 1250-year long drought record from Ea Tyn Lake, Central Highlands of Việt Nam,” The Holocene, vol. 32, no. 10, pp. 1026–1040, Oct. 2022, doi: 10.1177/09596836221106967.
[26] L. T. Pham et al., “Aeromagnetic data interpretation of the northern Kontum massif (Vietnam) for mapping subsurface structures,” Geocarto International, vol. 38, no. 1, p. 2246940, Dec. 2023, doi: 10.1080/10106049.2023.2246940.
[27] V.T. Tran, “Geology and Resources of Vietnam”. Publishing House for Science and Technology (In Vietnamese). 2009.
[28] D.N. Nguyen, & T. H. Nguyen, “Vietnam climate and climate resources”. Publishing house for Agriculture, Hanoi (In Vietnamese). 2004.
[29] K. Fægri, J. Iversen, P. E. Kaland, and K. Krzywinski, Textbook of pollen analysis, 4. ed., Repr. Chichester: Wiley, 1992
[30] F. Wang, et al., “Pollen flora of China”. Sciences Press, Beijing & Missouri Botanical Garden Press. 1995.
[31] T.C. Huang, “Pollen flora of Taiwan. National Taiwan University”. Botany department press. 1972.
[32] V.C. Tran, Con, “Structural and dynamic properties of the dry Dipterocarp forest in Central Highland of Vietnam”. Special volume, Vietnam Journal of Forestry Science. 2017.
[33] X. B. Tran, L. H. Trinh, V. Vambol, T. D. Luu, and T. T. Pham, “Assessing forest cover changes in Dak Lak province (Central Highlands of Vietnam) from multi-temporal Landsat data and machine learning techniques,” EQ, vol. 35, no. 3, pp. 1–18, Mar. 2024, doi: 10.12775/EQ.2024.035.
[34] A. Jirapinyakul, D. Sukaudom, C. Charoenpong, P. Sompongchaikul, P. Punwong, and K. A. Yamoah, “Hydroclimate Variability in the Mainland Southeast Asia During the Last Glacial Maximum,” OPEN QUAT, vol. 11, p. 9, July 2025, doi: 10.5334/oq.154.
[35] R. Hamilton et al., “Forest mosaics, not savanna corridors, dominated in Southeast Asia during the Last Glacial Maximum,” Proc. Natl. Acad. Sci. U.S.A., vol. 121, no. 1, p. e2311280120, Jan. 2024, doi: 10.1073/pnas.2311280120.
[36] G. C. Bond and R. Lotti, “Iceberg Discharges into the North Atlantic on Millennial Time Scales During the Last Glaciation,” Science, vol. 267, no. 5200, pp. 1005–1010, Feb. 1995, doi: 10.1126/science.267.5200.1005.
[37] J. M. Russell et al., “Glacial forcing of central Indonesian hydroclimate since 60,000 y B.P.,” Proc. Natl. Acad. Sci. U.S.A., vol. 111, no. 14, pp. 5100–5105, Apr. 2014, doi: 10.1073/pnas.1402373111.
[38] M. L. Griffiths et al., “Increasing Australian–Indonesian monsoon rainfall linked to early Holocene sea-level rise,” Nature Geosci, vol. 2, no. 9, pp. 636–639, Sept. 2009, doi: 10.1038/ngeo605.
[39] D.-C. Lin, M.-T. Chen, M. Yamamoto, and Y. Yokoyama, “Millennial-scale alkenone sea surface temperature changes in the northern South China Sea during the past 45,000 years (MD972146),” Quaternary International, vol. 333, pp. 207–215, May 2014, doi: 10.1016/j.quaint.2014.03.062.
[40] S. Steinke et al., “Reconstructing the southern South China Sea upper water column structure since the Last Glacial Maximum: Implications for the East Asian winter monsoon development: SOUTH CHINA SEA SURFACE WATER STRUCTURE,” Paleoceanography, vol. 25, no. 2, June 2010, doi: 10.1029/2009PA001850.