Study on Treatment of 2,4,6-Trinitrotoluene Using Modified Red Mud
Main Article Content
Abstract
2,4,6-Trinitrotoluene (TNT) is a highly toxic and recalcitrant nitroaromatic organic compound, often originating from explosive manufacturing activities. In this study, red mud, a metal-oxide-rich waste product from alumina production, was modified by a thermal method at various temperature to enhance its adsorption capacity for TNT in water. SEM and XRD analyses showed that the red mud sample modified at 400 °C has a distinct granular structure and good adsorption capability. The results indicated that the modified material reached maximum adsorption capacity of 12.078 mg/g after being heated at 400 oC. Under the conditions of pH = 3, a dosage of 1 g/100 mL of 50.0 mg/L TNT solution, and a reaction time of 60 minutes, the BT-400 sample achieved a TNT removal efficiency of 70.5%.
References
[2] M. Gräfe, G. Power, C. Klauber, Bauxite Residue Issues: III. Alkalinity and Associated Chemistry, Hydrometallurgy, Vol. 108, No. 1-2, 2011,
pp. 60-79, https://doi.org/10.1016/j.hydromet.2011.02.004.
[3] C. Klauber, M. Gräfe, G. Power, Bauxite Residue Issues: II, Options for Residue Utilization, Hydrometallurgy, Vol. 108, No. 12, 2011, pp. 11-32, https://doi.org/10.1016/j.hydromet.2011.02.007.
[4] T. Yang, L. Sheng, Y. Wang, K. N. Wyckoff,
C. He, Q. He, Characteristics of Cadmium Sorption by Heat-Activated Red Mud in Aqueous Solution, Sci Rep, Vol. 8, No. 1, 2018, pp. 13558, https://doi.org/10.1038/s41598-018-31967-5.
[5] J. Shi, W. Wang, Z. Li, Y. Shi, Ciprofloxacin Removal via Acid-Modified Red Mud: Optimizing the Process, Analyzing the Adsorption Features, and Exploring the Underlying Mechanism, Molecules, Vol. 29, No. 12, 2024, pp. 2928, https://doi.org/10.3390/molecules29122928.
[6] P. D. Du, N. T. Hieu, D. T. D. Trang, N. D. T. Tien, L. N. Tam, Utilization of Lam Dong Red Mud in Heterogenous Fenton Process to Decompose Methylene Blue, Thu Dau Mot University Journal of Science, Vol. 2, No. 21, 2015, pp. 88-94.
[7] N. H. Hung, N. T. Minh, D. D. Hung, N. B. Hung, New Discovery of Late Early Ordovician Graptolites and Discussion on Stratigraphic Sequence of Paleozoic Sediments in the Dinh Ca - Trang Xa Section, Vo Nhai Disctrict, Thai Nguyen Province, Northeast Vietnam, Vietnam Journal of Earth Sciences, Vol. 39, No. 1, 2017, https://doi.org/10.15625/0866-7187/39/1/9229.
[8] H. M. Bolt, G. H. Degen, S. B. Dorn, S. Plöttner, V. Harth, Genotoxicity and Potential Carcinogenicity of 2,4,6-Trinitrotoluene: Structural and Toxicological Considerations, Rev Environ Health, Vol. 21, No. 4, 2006, https://doi.org/10.1515/REVEH.2006.21.4.217.
[9] H. Nguyen, K. Do, T. Nguyen, Degradation of 2,4,6-Trinitroresorcinol in Aqueous Solution by Cold Plasma Technology, Pol J. Environ Stud,
Vol. 30, No. 6, pp. 5195-5201, 2021, https://doi.org/10.15244/pjoes/135831.
[10] S. Choe, S. H. Lee, Y. Y. Chang, K. Y. Hwang, J. Khim, Rapid Reductive Destruction of Hazardous Organic Compounds By Nanoscale Fe0, Chemosphere, Vol. 42, No. 4, 2001, pp. 367-372, https://doi.org/10.1016/S0045-6535(00)00147-8.
[11] R. F. Sievers, R. L. Stump, A. R. Monaco, Aplastic Anemia Following Exposure to Trinitrotoluene; Report of Three Cases., Occup Med (Chic Ill),
Vol. 1, pp. 351-362.
[12] N. M. Khai, N. V. Huong, N. T. N. Anh, V. D. Loi, A Study on Removal of Styphnic Acid in Aquatic Environment by using UV-H2O2/Nano TiO2,
Vol. 34, 2018, pp. 98-103, https://doi.org/10.25073/2588-1094/vnuees.43139.
[13] Y. Wu et al., Insights Into Role of Microstructure In TNT Adsorption Performances Onto Zeolite, Diatomite and Kaolinite Particles, Discover Applied Sciences, Vol. 6, No. 8, 2024, pp. 420, https://doi.org/10.1007/s42452-024-06121-8.
[14] M. L. P. Antunes et al., Red Mud From Brazil: Thermal Behavior and Physical Properties, in Industrial and Engineering Chemistry Research, 2012, pp. 775-779, https://doi.org/10.1021/ie201700k.
[15] A. R. Dinesen, C. T. Pedersen, C. B. Koch, The Thermal Conversion of Lepidocrocite (γ-FeOOH) Revisited, J Therm Anal Calorim, Vol. 64, No. 3, 2001, pp. 1303-1310, https://doi.org/10.1023/A:1011582004634.
[16] T. S. Gendler, V. P. Shcherbakov, M. J. Dekkers, A. K. Gapeev, S. K. Gribov, E. McClelland, The Lepidocrocite-Maghemite-haematite Reaction Chain-I. Acquisition of Chemical Remanent Magnetization by Maghemite, its Magnetic Properties and Thermal Stability, Geophys J. Int, Vol. 160, No. 3, 2005, pp. 815-32, https://doi.org/10.1111/j.1365-246X.2005.02550.x.
[17] Z. Wang, D. Xiao, R. T. Bush, J. Liu, Coprecipitated Arsenate Inhibits Thermal Transformation of 2-Line Ferrihydrite: Implications for Long-term Stability of Ferrihydrite, Chemosphere, Vol. 122, 2015, pp. 88-93, https://doi.org/10.1016/j.chemosphere.2014.11.017.
[18] A. Tom, P. N. D. Djonga, C. Tsamo, H. G. Valery, J. Azangueu, S. K. Noukelag, Structural Characterization of Bauxite Red Mud to Utilization in Ceramic Wall/Roofing Tile: Effect of Temperature on Mechanical Properties and Physic-Chemical Stability, Advances in Materials Physics and Chemistry, Vol. 12, No. 01, 2022, pp. 1-18, https://doi.org/10.4236/ampc.2022.121001.
[19] F. Li et al., Sustainable Remediation: Advances in Red Mud-Based Synergistic Fabrication Techniques and Mechanistic Insights for Enhanced Heavy Metal(Loid)s Sorption in Wastewater, Multidisciplinary Digital Publishing Institute (MDPI), 2025, https://doi.org/10.3390/pr13072249.
[20] B. Sekizkardeş, S. S. Uzun, A. Uzun, S. Kuhn,
K. K. Özkiper, S. F. K Öztulum, A Comprehensive Review on Red Mud‐Based Catalysts: Modification Methods and Applications in Thermal‐ and Photocatalysis, ChemCatChem,
Vol. 17, No. 5, 2025, https://doi.org/10.1002/cctc.202401678.
[21] P. Castaldi, M. Silvetti, G. Garau, S. Deiana, Influence of the pH on the Accumulation of Phosphate by Red Mud A Bauxite Ore Processing Waste, J. Hazard Mater, Vol. 182, No. 1-3, 2010, pp. 266-272, https://doi.org/10.1016/j.jhazmat.2010.06.025.
[22] D. T. Tran, T. D. To, T. H. Le, Q. T. Dao, L. D. Nghiem, Synthesis Of Highly Effective And Easily Recoverable MIL-100(Fe)/MgFe2O4 Adsorbent for Enhanced Antibiotic Removal from Water, Journal of Industrial and Engineering Chemistry, Vol. 147, 2025, pp. 149-160, https://doi.org/10.1016/j.jiec.2024.12.009.
[23] Y. Zhang, F. Wei, J. Xing, F. Lv, X. Meng, P. K. Chu, Adsorption Behavior and Removal of Organic Materials from TNT Red Water by Lignite Activated Carbon, 2012.
[24] S. Y. Oh, Y. D. Seo, Factors Affecting Sorption of Nitro Explosives to Biochar: Pyrolysis Temperature, Surface Treatment, Competition, and Dissolved Metals, J Environ Qual, Vol. 44, No. 3, 2015, pp. 833-840, https://doi.org/10.2134/jeq2014.12.0525.
[25] A. Yadav, M. O. Aquatar, R. J. Krupadam, Removal of Traces of Highly Explosive Trinitrotoluene from TNT Red Water by Using Graphene Nanocomposites Prepared from Solid Wastes: An Example of Circular Economy, Environmental Science and Pollution Research, Vol. 32, No. 24, 2025, pp. 14810-14826, https://doi.org/10.1007/s11356-025-36570-6.
[26] A. R. Zarei, R. S. Zafarghandi, Selective Determination of 2,4,6-Trinitrotoluene in Water Samples Based on Magnetic Imprinted Nanoparticles via Grafting Polymerization, J. Braz. Chem. Soc., 2015, https://doi.org/10.5935/0103-5053.20150035.
[27] Y. Wang, X. Liu, B. Chen, Y. Zhang, Rapid Adsorption of 2,4,6-Trinitrotoluene by Hierarchically Porous Indole-based Aerogel, Colloids Surf A Physicochem Eng Asp, Vol. 635, 2022, pp. 127964, https://doi.org/10.1016/j.colsurfa.2021.127964.
[28] Y. Liu, S. Zeng, X. He, Y. Wu, Y. Liu, Y. Wang, Adsorption and Removal of 2,4,6-Trinitrotoluene by a Glycoluril-Derived Molecular-Clip-Based Supramolecular Organic Framework, Molecules, Vol. 29, No. 24, 2024, pp. 5822, https://doi.org/10.3390/molecules29245822.
[29] Y. Xu et al., Efficient Adsorption of Trinitrotoluene by Isoxazoline‐Based Porous Polymers Prepared from Room‐Temperature Stable Bis Nitrile Oxide, J. Appl. Polym. Sci.,
Vol. 140, No. 13, 2023, https://doi.org/10.1002/app.53678.