Nguyen Thi Van Anh, Nguyen Thi Minh Hang, Le Hong Luyen, Vu Thi Thom

Main Article Content

Abstract

In this study, six compounds isolated from the n-hexane fraction of Canna edulis Ker Gawl rhizomes for the first time include 24-methylenecycloartane-3β-ol, sitoindoside I, citrulloside, 16β-hydro-19-al-ent-kauran-17-oic acid, daucosterol, and β-sitosterol. Spectroscopic methods as MS and NMR were used to elucidate their structures.


Keywords:


Canna edulis Ker Gawl, β-sitosterol, daucosterol, sitoindoside I, citrulloside, 24-methylenecycloartane-3β-ol, 16β-hydro-19-al-ent-kauran-17-oic acid.


References


[1] T. H. Vu, Q. U. Le, Edible Canna (Canna edulis Ker), a Potential Crop for Vietnam Food Industry, Int. J. Bot, Vol. 4, No. 4, 2019, pp. 58-59.
[2] A. S. A. Snafi, Bioactive Components and Pharmacological Effects of Canna indica - an Overview, Int. J. Pharmacol. Toxicol., Vol. 5, No. 2, 2015, pp. 71-75.
[3] N. Tanakar, The Utilization of Edible Canna Plants in Southeastern Asia and Southern China, Econ. Bot, Vol. 58, No. 1, 2004, pp. 112-114.
[4] J. Zhang, W. Z. Wu, Q. Mi, Q, Phenolic Compounds from Canna edulis Ker Residue and Their Antioxidant Activity, LWT - Food Sci. Technol., Vol. 44, No. 10, 2011, pp. 2091-2096.
[5] J. Zhang, W. Z. Wu, Soluble Dietary Fiber from Canna edulis Ker By-product and Its Physicochemical Properties, Carbohydr. Polym., No. 92, No. 1, 2013, pp. 289-296.
[6] F. Xie, S. Gong, W. Zhan, J. Wu, Z. Wang, Potential of Lignin from Canna edulis Ker Residue in the Inhibition of α-d-glucosidase: Kinetics and Interaction Mechanism Merging with Docking Simulation, Int. J. Biol. Macromol., Vol. 95,No. 2017, pp. 592-602.
[7] T. M. H. Nguyen, H. L. Le, T. T. Ha, B. H. Bui,N. T. Le, V. H. Nguyen, T. V. A. Nguyen, Inhibitory Effect on Human Platelet Aggregation and Coagulation and Antioxidant Activity of Canna edulis Ker Gawl Rhizhomes and Its Secondary Metabolites, J. Ethnopharmacol., Vol. 263, 2020, pp.113-136.
[8] J. D. P. Teresa, J. G. Urones, J. S. Marcos,P. Basabe, M. J. S. Cuarado, R. F. Moro, Triterpenes from Euphorbia broteri, Phytochem, Vol. 26, 1987, pp. 1767-1776.
[9] A. T. Nguyen, H. Malonne, P. Duez, R. V. Fastre, M. Vanhaelen, J. Fontaine, Cytotoxic Constituents from Plumbago zeylanica, Fitoterapia, Vol. 75,No. 5, 2004, pp. 500-504.
[10] F. J. Momeni, S. F. Kimbu, B. L. Sondengam,M. T. H. Khan, M. I. Choundhary, A. U. Rahman, Potent Inhibitors of Tyrosinase Activity from Citrullus colocynthis Schrad. (Cucurbitaceae), Acta Pharmaceutica Sciencia, Vol, 52, 2010, pp. 328-334.
[11] Y. C. Wu, Y. C. Hung, F. R. Chang, M. Cosentino, H. K. Wang, K. H. Lee, Identification of ent-16β,17-dihydroxykauran-19-oic Acid as an Anti-HIV Principle and Isolation of the New Diterpenoids Annosquamosins A and B from Annona squamosa. J. Nat. Prod., Vol. 59, No. 6, 1996, pp. 635-637.
[12] F. R. Chang, P. Y. Yang, J. Y. Lin, K. H. Lee,Y. C. Wu, Bioactive Kaurane Diterpenoids from Annona glabra, J Nat Prod, Vol. 61, No. 4, 1998, pp. 437-439.
[13] F. M., Moghaddam, M. Farimani, M. Amin, Chemical Constituents of Dichloromethane Extract of Cultivated Satureja khuzistanica. Evid Based Complement Alternat Med., Vol. 4, No. 1, 2007, pp. 95-98.
[14] Z. Sheng, Z. Dai, S. Pan, H. Wang, Y. Hu, W. Ma, Isolation and Characterization of an α-glucosidase Inhibitor from Musa spp. (Baxijiao) Flowers, Molecules, Vol. 19, No. 7, 2014, pp. 10563-10573.
[15] E. Gupta, β-sitosterol: Predominant Phytosterol of Therapeutic Potential, Innova Food Tech, Vol. 32, 2020, pp. 465-477.
[16] J. Zeng, X. Liu, X. Li, Y. Zheng, B. Liu, Y. Xiao, Daucosterol Inhibits the Proliferation, Migration and Invasion of Hepatocellular Carcinoma Cells via Wnt/ β-catenin Signaling,Molecules, Vol. 22, No. 2017, pp. 862.
[17] K. H. Kuo, Y. T. Yeh, S. Y. Pan, S. C. Hsieh, Identification and Structural Elucidation of Anti-Inflammatory Compounds from Chinese Olive (Canarium Album L.) Fruit Extracts. Foods, Vol. 8, No. 10, 2019, pp. 441.