Phan Hong Minh, Vu Khanh Linh, Nguyen Thanh Hai, Bui Thanh Tung

Main Article Content

Abstract

The globe is engulfed by one of the most extensive public health crises as COVID-19 has become a leading cause of death worldwide. COVID-19 was first detected in Wuhan, China, in December 2019, causing the severe acute respiratory syndrome. This review discusses issues related to Covid-19 vaccines, such as vaccine development targets, vaccine types, efficacy, limitations and development prospects.


Keywords: Covid-19, SARS-CoV-2, vaccine, spike protein.


References


 [1] C. Wang, P. W. Horby, F. G. Hayden, G. F. Gao, A Novel Coronavirus Outbreak of Global Health Concern, The Lancet, Vol. 395, No. 10223, 2020, pp. 470-473, https://doi.org/10.1016/S0140-6736(20)30185-9.
[2] T. Singhal, A Review of Coronavirus Disease-2019 (COVID-19), The Indian Journal of Pediatrics, Vol. 87, 2020, pp. 281-286, https://doi.org/10.1007/s12098-020-03263-6.
[3] World Health Organization, WHO Coronavirus (COVID-19) Dashboard, https://covid19.who.int/, (accessed on: August 21st, 2021).
[4] A. Alimolaie, A Review of Coronavirus Disease-2019 (COVID-19), Biological Science Promotion Vol. 3, No. 6, 2020, pp. 152-157.
[5] J. Yang, Y. Zheng, X. Gou, K. Pu, Z. Chen, Q. Guo et al., Prevalence of Comorbidities and Its Effects in Patients Infected with SARS-Cov-2: A Systematic Review and Meta-Analysis, International Journal of Infectious Diseases, Vol. 94, 2020, pp. 91-95, https://doi.org/10.1016/j.ijid.2020.03.017.
[6] H. E. Randolph, L. B. Barreiro, Herd Immunity: Understanding COVID-19, Immunity, Vol. 52, No. 5, 2020, pp. 737-741, https://doi.org/10.1016/j.immuni.2020.04.012.
[7] F. Jung, V. Krieger, F. Hufert, J. H. Küpper, Herd Immunity or Suppression Strategy to Combat COVID-19, Clinical Hemorheology and Microcirculation, Vol. 75, No. 1, 2020, pp. 13-17, https://doi.org/10.3233/CH-209006.
[8] O. Sharma, A. A. Sultan, H. Ding, C. R. Triggle, A Review of the Progress and Challenges of Developing a Vaccine for COVID-19, Frontiers in Immunology, Vol. 11, No. 2413, 2020, pp. 1-17, https://doi.org/10.3389/fimmu.2020.585354.
[9] G. D. Sempowski, K. O. Saunders, P. Acharya, K. J. Wiehe, B. F. Haynes, Pandemic preparedness: Developing Vaccines and Therapeutic Antibodies for COVID-19, Cell, Vol. 181, No. 7, 2020, pp. 1458-1463, https://doi.org/10.1016/j.cell.2020.05. 041.
[10] A. J. R. Morales, J. A. C. Ospina, E. G. Ocampo, R. V. Peña, Y. H. Rivera, J. P. E. Antezana et al., Clinical, Laboratory and Imaging Features of COVID-19: A Systematic Review and Meta-Analysis. Travel Medicine and Infectious Disease, Vol. 34, 2020, pp. 101-623, https://doi.org/10.1016/j.tmaid.2020.101623.
[11] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu et al., Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China, The Lancet, Vol. 395, No. 10223, 2020, pp. 497-506, https://doi.org/10.1016/S0140-6736(20)30183-5.
[12] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu et al., Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding, The Lancet, Vol. 395, No. 10224, 2020, pp. 565-574, https://doi.org/10.1016/S0140-6736(20)30251-8.
[13] L. Chen, W. Liu, Q. Zhang, K. Xu, G. Ye, W. Wu et al., RNA Based mNGS Approach Identifies a Novel Human Coronavirus From Two Individual Pneumonia Cases in 2019 Wuhan Outbreak, Emerging Microbes & Infections, Vol. 9, No. 1, 2020, pp. 313-319, https://doi.org/10.1080/22221751.2020.1725399.
[14] Y. Chen, Q. Liu, D. Guo, Emerging Coronaviruses: Genome Structure, Replication, and Pathogenesis, Journal of Medical Virology, Vol. 92, No. 4, 2020, pp. 418-423, https://doi.org/10.1002/jmv.25681.
[15] D. R. Beniac, A. Andonov, E. Grudeski, T. F. Booth, Architecture of The SARS Coronavirus Prefusion Spike, Nature Structural & Molecular Biology, Vol. 13, No. 8, 2006, pp. 751-752, https://doi.org/10.1038/nsmb1123.
[16] B. W. Neuman, G. Kiss, A. H. Kunding, D. Bhella, M. F. Baksh, S. Connelly et al., A Structural Analysis of M Protein in Coronavirus Assembly and Morphology, Journal of Structural Biology, Vol. 174, No. 1, 2011, pp. 11-22, https://doi.org/10.1016/j.jsb.2010.11.021.
[17] J. L. N. Torres, M. L. DeDiego, C. V. Báguena, J. M. J. Guardeño, J. A. R. Nava, R. F. Delgado et al., Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Ion Channel Activity Promotes Virus Fitness and Pathogenesis, Plos Pathogens Vol. 10, No. 5, 2014, https://doi.org/10.1371/journal.ppat.1004077.
[18] A. R. Fehr, S. Perlman. Coronaviruses: An Overview of Their Replication and Pathogenesis. Coronaviruses, New York, 2015, pp. 1-23.
[19] M. Letko, A. Marzi, V. Munster, Functional Assessment of Cell Entry and Receptor Usage for SARS-CoV-2 and Other Lineage B Betacoronaviruses,. Nature Microbiology, Vol. 5, No. 4, 2020, pp. 562-569, https://doi.org/10.1038/s41564-020-0688-y.
[20] A. Grifoni, D. Weiskopf, S. I. Ramirez, J. Mateus, J. M. Dan, C. R. Moderbacher et al., Targets of T Cell Responses to SARS-Cov-2 Coronavirus in Humans With COVID-19 Disease and Unexposed Individuals, Cell, Vol. 181, No. 7, 2020, pp. 1489-1501, https://doi.org/10.1016/j.cell.2020.05.015.
[21] M. Leslie, T Cells Found in Coronavirus Patients Bode Well for Long-Term Immunity, American Association for the Advancement of Science,
Vol. 368, No. 6493, 2020, pp. 809-810, https://doi.org/10.1126/science.368.6493.809.
[22] N. L. Bert, A. T. Tan, K. Kunasegaran, C. Y. Tham, M. Hafezi, A. Chia et al., SARS-CoV-2-specific T Cell Immunity in Cases of COVID-19 and SARS, and Uninfected Controls, Nature, Vol. 584, No. 7821, 2020, pp. 457-462, https://doi.org/10.1038/s41586-020-2550-z .
[23] E. R. Adams, M. Ainsworth, R. Anand, M. I. Andersson, K. Auckland, J. K. Baillie et al., Antibody Testing for COVID-19: A Report from the National COVID Scientific Advisory Panel, Wellcome Open Research, Vol. 5, 2020, pp. 139-156, https://doi.org/10.12688/wellcomeopenres.15927.1.
[24] N. Vabret, G. J. Britton, C. Gruber, S. Hegde,
J. Kim, M. Kuksin et al., Immunology of COVID-19: current state of the science, Immunity. Vol. 52, No. 6, 2020, pp. 910-941, https://doi.org/10.1016/j.immuni.2020.05.002
[25] W. Liu, A. Fontanet, P. H. Zhang, L. Zhan, Z. T. Xin, L. Baril et al., Two-Year Prospective Study of The Humoral Immune Response of Patients with Severe Acute Respiratory Syndrome, The Journal of Infectious Diseases, Vol. 193, No. 6, 2006, pp. 792-795, https://doi.org/10.1086/500469.
[26] E. Callaway, Coronavirus Vaccines Leap Through Safety Trials-But Which Will Work is Anybody's Guess, Nature, Vol. 583, No. 7818, 2020, pp. 669-671, https://doi.org/10.1038/d41586-020-02174-y.
[27] Y. Dong, T. Dai, Y. Wei, L. Zhang, M. Zheng, F. Zhou. A Systematic Review of SARS-Cov-2 Vaccine Candidates, Signal Transduction and Targeted Therapy, Vol. 5, No. 1, 2020, pp. 1-14, https://doi.org/10.1038/s41392-020-00352-y.
[28] E. P. Regalado, Vaccines for SARS-CoV-2: Lessons from Other Coronavirus Strains. Infectious Diseases and Therapy, Vol. 9, No. 2, 2020, pp. 255-274, https://doi.org/10.1007/s40121-020-00300-x.
[29] Y. Cai, J. Zhang, T. Xiao, H. Peng, S. M. Sterling, R. M. Walsh et al., Distinct Conformational States of SARS-CoV-2 Spike Protein, Science, Vol. 369, No. 6511, 2020, pp. 1586-1592, https://doi.org/10.1126/science.abd4251.
[30] M. S. Suthar, M. G. Zimmerman, R. C. Kauffman, G. Mantus, S. L. Linderman, W. H. Hudson et al., Rapid Generation of Neutralizing Antibody Responses in COVID-19 Patients, Cell Reports Medicine, Vol. 1, No. 3, 2020, pp. 100040-100047, https://doi.org/10.1016/j.xcrm.2020.100040.
[31] Q. Gao, L. Bao, H. Mao, L. Wang, K. Xu, M. Yang et al., Development of an Inactivated Vaccine Candidate for SARS-CoV-2, Science, Vol. 36, No. 6499, 2020, pp. 77-81, https://doi.org/10.1126/science.abc1932.
[32] L. Ni, F. Ye, M. L. Cheng, Y. Feng, Y. Q. Deng, H. Zhao et al., Detection of SARS-CoV-2-specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals, Immunity, Vol. 52,
No. 6, 2020, pp. 971-977, https://doi.org/10.1016/j.immuni.2020.04.023.
[33] B. D. Quinlan, H. Mou, L. Zhang, Y. Guo, W. He, A. Ojha et al., The SARS-CoV-2 Receptor-binding Domain Elicits a Potent Neutralizing Response Without Antibody-dependent Enhancement, Available at SSRN, Vol. 3575134, 2020, pp. 1-24, http://dx.doi.org/10.2139/ssrn.3575134.
[34] D. B. Melo, B. E. N. Payant, W. C. Liu, S. Uhl, D. Hoagland, R. Moller et al., Imbalanced Host Responseto SARS-Cov-2 Drives Development of COVID-19, Cell, Vol. 181, No. 5, 2020, pp. 1036-1045, https://doi.org/10.1016/j.cell.2020.04.026.
[35] J. Hadjadj, N. Yatim, L. Barnabei, A. Corneau, J. Boussier, N. Smith et al., Impaired Type I Interferon Activity and Inflammatory Responses in Severe COVID-19 Patients, Science, Vol. 36,
No. 6504, 2020, pp. 718-724, https://doi.org/10.1126/science.abc6027.
[36] H. Pang, Y. Liu, X. Han, Y. Xu, F. Jiang, D. Wu et al., Protective Humoral Responses to Severe Acute Respiratory Syndrome-associated Coronavirus: Implications for the Design of an Effective Protein-based Vaccine, Journal of General Virology, Vol. 85, No. 10, 2004, pp. 3109-3113, https://doi.org/10.1099/vir.0.80111-0.
[37] Y. Li, R. Tenchov, J. Smoot, C. Liu, S. Watkins, Q. Zhou, A Comprehensive Review of The Global Efforts on COVID-19 Vaccine Development, ACS Central Science , Vol. 7, No. 4, 2021, pp. 512-533, https://doi.org/10.1021/acscentsci.1c00120.
[38] J. A. Wolff, R. W. Malone, P. Williams, W. Chong, G. Acsadi, A. Jani et al., Direct Gene Transfer Into Mouse Muscle in Vivo, Science, Vol. 247, No. 4949, 1990, pp. 1465-1468,. https://doi.org/10.1126/science.1690918.
[39] M. Ingolotti, O. Kawalekar, D. J. Shedlock, K. Muthumani, D. B. Weiner, DNA Vaccines for Targeting Bacterial Infections, Expert Review of Vaccines, Vol. 9, No. 7, 2010, pp. 747-763, https://doi.org/10.1586/erv.10.57.
[40] S. Jones, K. Evans, H. M. Johnn, M. Sharpe, J. Oxford, R. L. Williams et al., DNA Vaccination Protects Against an Influenza Challenge in A Double-Blind Randomised Placebo-Controlled Phase 1b Clinical Trial, Vaccine, Vol. 27, No. 18, 2009, pp. 2506-2512, https://doi.org/10.1016/j.vaccine.2009.02.061.
[41] J. Kim, INOVIO Doses First Subject in Phase 2 Segment of its INNOVATE Phase 2/3 Clinical Trial for INO-4800, its DNA Medicine to Prevent COVID-19, Cision PR Newswire: News Distribution, Targeting and Monitoring Home, https://www.prnewswire.com/newsreleases/inovio-doses-first-subject-in-phase-2-segment-of-its-innovate-phase-23-clinical-trial-for-ino-4800-its-dna-medicine-to-prevent-covid-19-301187002.html/, 2020, (accessed on: December 7th, 2020).
[42] P. Tebas, S. Yang, J. D. Boyer, E. L. Reuschel, A. Patel, A. C. Quick et al., Safety and Immunogenicity of INO-4800 DNA Vaccine Against SARS-Cov-2: A Preliminary Report of an Open-Label, Phase 1 Clinical Trial, EClinical Medicine, Vol. 31, No. 1000689, 2021, https://doi.org/10.1016/j.eclinm.2020.100689.
[43] T. Schlake, A. Thess, M. F. Mleczek, K. J. Kallen. Developing mRNA-vaccine Technologies, RNA Biology, Vol. 9, No. 11, 2012, pp. 1319-1330, https://doi.org/10.4161/rna.22269.
[44] K. J. Hassett, K. E. Benenato, E. Jacquinet, A. Lee, A. Woods, O. Yuzhakov et al., Optimization of lipid Nanoparticles for Intramuscular Administration of mRNA Vaccines, Molecular Therapy-Nucleic Acids, Vol. 15, 2019, pp. 1-11, https://doi.org/10.1016/j.omtn.2019.01.013.
[45] A. Bashirullah, R. L. Cooperstock, H. D. Lipshitz, Spatial and Temporal Control of RNA Stability, Proceedings of the National Academy of Sciences, Vol. 98, No. 13, 2001, pp. 7025-7028.
[46] K. Kariko, H. Muramatsu, J. Ludwig, D. Weissman, Generating the Optimal mRNA for Therapy: HPLC Purification Eliminates Immune Activation and Improves Translation of Nucleoside-Modified, Protein-Encoding mRNA, Nucleic Acids Research, Vol. 39, No. 21, 2011, pp. 142-152, https://doi.org/10.1093/nar/gkr695.
[47] N. Pardi, M. J. Hogan, M. S. Naradikian, K. Parkhouse, D. W. Cain, L. Jones et al., Nucleoside-Modified mRNA Vaccines Induce Potent T Follicular Helper and Germinal Center B Cell Responses, Journal of Experimental Medicine, Vol. 215, No. 6, 2018, pp. 1571-1588, https://doi.org/10.1084/jem.20171450.
[48] L. A. Jackson, E. J. Anderson, N. G. Rouphael, P. C. Roberts, M. Makhene, R. N. Coler et al., An mRNA Vaccine Against SARS-CoV-2-Preliminary Report, New England Journal of Medicine, Vol. 383, No. 20, 2020, pp. 1920-1931, https://doi.org/10.1056/NEJMoa2022483.
[49] K. S. Corbett, D. K. Edwards, S. R. Leist, O. M. Abiona, S. B. Barnum, R. A. Gillespie et al., SARS-CoV-2 mRNA Vaccine Design Enabled by Prototype Pathogen Preparedness, Nature, Vol. 586, No. 7830, 2020, pp. 567-571, https://doi.org/10.1038/s41586-020-2622-0.
[50] K. S. Corbett, B. Flynn, K. E. Foulds, J. R. Francica, S. B. Barnum, A. P. Werner et al., Evaluation of the mRNA-1273 Vaccine Against SARS-CoV-2 in Nonhuman Primates, New England Journal of Medicine, Vol. 383, No. 16, 2020, pp. 1544-1555, https://doi.org/10.1056/NEJMoa2024671.
[51] E. E. Walsh, R. Frenck, A. R. Falsey, N. Kitchin, J. Absalon, A. Gurtman et al., RNA-Based COVID-19 Vaccine BNT162b2 Selected for a Pivotal Efficacy Study, Medrxiv, Vol. 2, 2020, https://doi.org/10.1101/2020.08.17.20176651.
[52] M. J. Mulligan, K. E. Lyke, N. Kitchin, J. Absalon, A. Gurtman, S. Lockhart et al., Phase 1/2 Study to Describe the Safety and Immunogenicity of a COVID-19 RNA Vaccine Candidate (BNT162b1) in Adults 18 to 55 Years of Age: Interim Report, Medrxiv, Vol. 586, 2020, pp. 589-593, https://doi.org/10.1056/NEJMoa2028436.
[53] E. J. Anderson, N. G. Rouphael, A. T. Widge, L. A. Jackson, P. C. Roberts, M. Makhene et al., Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults, New England Journal of Medicine, Vol. 383, No. 25, 2020, pp. 2427-2438, https://doi.org/10.1038/s41586-020-2639-4.
[54] P. F. McKay, K. Hu, A. K. Blakney, K. Samnuan, J. C. Brown, R. Penn et al., Self-amplifying RNA SARS-CoV-2 Lipid Nanoparticle Vaccine Candidate Induces High Neutralizing Antibody Titers in Mice, Nature Communications, Vol. 11, No. 1, 2020, pp. 1-7, https://doi.org/10.1038/s41467-020-17409-9.
[55] J. H. Erasmus, A. P. Khandhar, A. C. Walls, E. A. Hemann, M. A. O’Connor, P. Murapa et al., Single-dose Replicating RNA vaccine Induces Neutralizing Antibodies Against SARS-CoV-2 in Nonhuman Primates, BioRxiv, 2020, https://doi.org/10.1101/2020.05.28.121640.
[56] R. D. Alwis, E. S. Gan, S. Chen, Y. S. Leong, H. C. Tan, S. L. Zhang et al., A Single Dose of Self-Transcribing and Replicating RNA-based SARS-CoV-2 Vaccine Produces Protective Adaptive Immunity in Mice, Molecular Therapy, Vol. 29, No. 6, 2021, pp. 1970-1983, https://doi.org/10.1016/j.ymthe.2021.04.001.
[57] M. R. Guroff, Replicating and Non-Replicating Viral Vectors for Vaccine Development, Current Opinion in Biotechnology, Vol. 18, No. 6, 2007, pp. 546-556, https://doi.org/10.1016/j.copbio.2007.10.010.
[58] K. Benihoud, P. Yeh, M. Perricaudet, Adenovirus Vectors for Gene Delivery, Current Opinion in Biotechnology, Vol. 10, No. 5,1999, pp. 440-447, https://doi.org/10.1016/s0958-1669(99)00007-5.
[59] Z. Xiang, G. Gao, A. R. Sandoval, C. J. Cohen, Y. Li, J. M. Bergelson et al., Novel, Chimpanzee Serotype 68-Based Adenoviral Vaccine Carrier for Induction of Antibodies to A Transgene Product, Journal of Virology, Vol. 76, No. 6, 2002, pp. 2667-2675, https://doi.org/10.1128/JVI.76.6.2667-2675.2002.
[60] F. C. Zhu, X. H. Guan, Y. H. Li, J. Y. Huang, T. Jiang, L. H. Hou et al., Immunogenicity and Safety Of A Recombinant Adenovirus Type-5-Vectored COVID-19 Vaccine in Healthy Adults Aged 18 Years or Older: A Randomised, Double-Blind, Placebo-Controlled, Phase 2 Trial, The Lancet, Vol. 396, No. 10249, 2020, pp. 479-488, https://doi.org/10.1016/S0140-6736(20)31605-6.
[61] F. C. Zhu, Y. H. Li, X. H. Guan, L. H. Hou, W. J. Wang, J. X. Li et al., Safety, Tolerability, and Immunogenicity of A Recombinant Adenovirus Type-5 Vectored COVID-19 Vaccine: A Dose-Escalation, Open-Label, Non-Randomised, First-in-Human Trial, The Lancet. Vol. 395, No. 10240, 2020, pp. 1845-1854.
[62] S. Wu, G. Zhong, J. Zhang, L. Shuai, Z. Zhang, Z. Wen, et al. A Single Dose of An Adenovirus-Vectored Vaccine Provides Protection Against SARS-Cov-2 Challenge, Nature Communications Vol. 1, No. 11, 2020, pp. 1-7, https://doi.org/10.1016/s41467-020-17972-1.
[63] P. M. Folegatti, K. J. Ewer, P. K. Aley, B. Angus, S. Becker, S. B. Rammerstorfer et al., Safety and Immunogenicity of The Chadox1 Ncov-19 Vaccine Against SARS-Cov-2: A Preliminary Report of A Phase 1/2, Single-Blind, Randomised Controlled Trial, The Lancet, Vol. 396, No. 10249, 2020, pp. 467-478, https://doi.org/10.1016/S0140-6736(20)31604-4.
[64] N. V. Doremalen, T. Lambe, A. Spencer, S. B. Rammerstorfer, J. N. Purushotham, J. R. Port et al., ChAdOx1 nCoV-19 Vaccine Prevents SARS-Cov-2 Pneumonia in Rhesus Macaques, Nature, Vol. 586, No. 7830, 2020, pp. 578-582, https://doi.org/10.1016/s41586-020-2608-y.
[65] D. Y. Logunov, I. V. Dolzhikova, O. V. Zubkova, A. I. Tukhvatullin, D. V. Shcheblyakov, A. S. Dzharullaeva et al., Safety and Immunogenicity of an Rad26 And Rad5 Vector-Based Heterologous Prime-Boost COVID-19 Vaccine in Two Formulations: Two Open, Non-Randomised Phase 1/2 Studies From Russia, The Lancet, Vol. 396, No. 10255, 2020, pp. 887-897, https://doi.org/10.1016/S0140-6736(20)31866-3.
[66] S. Y. Jung, K. W. Kang, E. Y. Lee, D. W. Seo, H. L. Kim, H. Kim et al., Heterologous Prime-Boost Vaccination with Adenoviral Vector and Protein Nanoparticles Induces Both Th1 and Th2 Responses Against Middle East Respiratory Syndrome Coronavirus, Vaccine, Vol. 36, No. 24, 2018, pp. 3468-3476, https://doi.org/10.1016/j.vaccine.2018.04.082.
[67] S. Lu, Heterologous Prime-Boost Vaccination. Current Opinion in Immunology, Vol. 21, No. 3, 2009, pp. 346-351, https://doi.org/10.1016/j.coi.2009.05.016.
[68] D. Y. Logunov, I. V. Dolzhikova, D. V. Shcheblyakov, A. I. Tukhvatulin, O. V. Zubkova, A. S. Dzharullaeva et al., Safety and Efficacy of an Rad26 and Rad5 Vector-Based Heterologous Prime-Boost COVID-19 Vaccine: an Interim Analysis of A Randomised Controlled Phase 3 Trial in Russia, The Lancet, Vol. 397, No. 10275, 2021, pp. 671-681, https://doi.org/10.1016/S0140-6736(21)00234-8.
[69] T. Ura, K. Okuda, M. Shimada. Developments in Viral Vector-Based Vaccines, Vaccines, Vol. 2, No. 3, 2014, pp. 624-641, https://doi.org/10.3390/vaccines2030624.
[70] B. E. Bache, M. P. Grobusch, S. T. Agnandji. Safety, Immunogenicity and Risk-Benefit Analysis of Rvsv-ΔG-ZEBOV-GP (V920) Ebola Vaccine in Phase I-III Clinical Trials Across Regions. Future Microbiology, Vol. 15, No. 2, 2020, pp. 85-106, https://doi.org/10.2217/fmb-2019-0237.
[71] Ebola Vaccines, NIH: National Institute of Allergy and Infectious Diseases Logo, 2020, https://www.niaid.nih.gov/diseases-conditions/ebola-vaccines/, (accessed on: January 9th, 2020).
[72] F. Krammer, SARS-CoV-2 Vaccines in Development, Nature, Vol. 586, No. 7830, 2020, pp. 516-527, https://doi.org/10.1038/s41586-020-2798-3.
[73] Y. Zhang, G. Zeng, H. Pan, C. Li, Y. Hu, K. Chu et al., Safety, Tolerability, and Immunogenicity of an Inactivated SARS-CoV-2 Vaccine in Healthy Adults Aged 18-59 Years: A Randomised, Double-Blind, Placebo-Controlled, Phase 1/2 Clinical Trial, The Lancet Infectious Diseases, Vol. 21, No. 2, 2021, pp. 181-192, https://doi.org/10.1016/S1473-3099(20)30843-4.
[74] Sinovac Announces Phase III Results of Its COVID-19 Vaccine, Sinovac, 2021. https://www.businessswwire.com/news/home/20210205005496/en/Sinovac-Announces-Phase-III-Results-of-Its-COVID-19-Vaccine/, 2021, (accessed on: February 5th,2021).
[75] Sinovac Receives Conditional Marketing Authorization in China for its COVID-19 Vaccine. Sinovac, https://www.businessswwire.com/news/ home/20210208005305/en/Sinovac-Receives-Conditional-Marketing-Authorization-in-China-for-its-COVID-19-Vaccin/, 2021, (accessed on: February 8th, 2021).
[76] L. M. Rossen, A. M. Branum, F. B. Ahmad, P. Sutton, R. N. Anderson, Excess Deaths Associated with COVID-19, by Age and Race and Ethnicity-United States, January 26-October 3, 2020, Morbidity and Mortality Weekly Report, Vol. 69, No. 42, 2020, pp. 1522-1527.
[77] China Grants Conditional Market Approval for Sinopharm CNBG’s COVID-19 Vaccine. Sinopharm, http://www.sinopharm.com/en/s/1395-4173-38862.html/, 2021, (accessed on: January
2nd, 2021).
[78] V. A. Fulginiti, J. J. Eller, A. W. Downie, C. H. Kempe, Altered Reactivity to Measles Virus: Atypical Measles in Children Previously Immunized with Inactivated Measles Virus Vaccines, Jama, Vol. 202, No. 12, 1967, pp. 1075-1080, https://doi.org/10.1001/jama.1967.03130250057008.
[79] H. W. Kim, J. G. Canchola, C. D. Brandt, G. Pyles, R. M. Chanock, K. Jensen et al., Respiratory Syncytial Virus Disease in Infants Despite Prior Administration of Antigenic Inactivated Vaccine. American Journal of Epidemiology, Vol. 89, No. 4, 1969, pp. 422-434, https://doi.org/10.1093/oxfordjournals.aje.a120955.
[80] Novavax Confirms High Levels of Efficacy Against Original and Variant COVID-19 Strains in United Kingdom and South Africa Trials, Novavax 2021, https://www.prnewswire.com/news-releases/novavax-confirms-high-levels-of-efficacy-against-original-and-variant-covid-19-strains-in-united-kingdom-and-south-africa-trials-301246019.html/, (accessed on: March 11th, 2021).
[81] Our Vaccine, Covaxx, 2020, https://www.gavi.org/covax-vaccine-roll-out/, (accessed on: August 14th, 2021).
[82] M. O. Mohsen, G. Augusto, M. F. Bachmann, The 3Ds in Virus‐like Particle Based‐vaccines: Design, Delivery and Dynamics, Immunological Reviews Vol. 296, No. 1, 2020, pp. 155-168, https://doi.org/10.1111/imr.12863.