Dinh Doan Long, Pham Thi Hong Nhung, Tran Thi Thuy Anh, Hoang Hai Yen

Main Article Content

Abstract

Abstract. N-acetyltransferase 2 (NAT2) modifies drug toxicity and cancer risk due to its role in bioactivation and detoxification of arylamine and hydrazine drugs and carcinogens. Human NAT2 alleles possess a combination of single nucleotide polymorphisms (SNPs) associated with slow acetylation phenotypes. To identify variations in genetic polymorphisms of drug-metabolizing enzyme in Vietnamese for the first time, three SNPs of NAT2, C341T (I114T), G590A (R197Q) and G857A (G286E) were determined by using PCR- RFLP technique. For NAT2, the 341T allele appear with a rather low frequency of 2% in our 100 subjects. The frequencies of alleles 590A and 857A were also examined in this study with 12.5% and 25%, respectively. The variation in the genetic polymorphisms of drug-metabolizing enzyme is worthy of futher study to understand different therapeutic and adverse drug responses in Vietnamese population.

Keywords:  N-acetyltransferase 2 enzyme, single nucleotide  polymorphism  (SNP), PCR-RFLP.

References

[1] W.W. Weber, D.W. Hein, Clinical pharmacokinetics of isoniazid, Clin Pharmacokinet; 4(6) (1979) 401
[2] W.W. Weber, D.W. Hein, N-acetylation pharmacogenetics, Pharmacol Rev 37(1)(1985) 25.
[3] D.W. Hein, M.A.Doll, A.J. Fretland, M.A. Leff, S.J. Webb, G.H. Xiao, U.S. Devanaboyina, N.A. Nangju, Y. Feng, Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms, Cancer Epidemiol Biomarkers Prev 9(1)(2000) 29.
[4] D.W. Hein, Acetylator genotype and arylamine-induced carcinogenesis, Biochim Biophys Acta 948(1)(1988) 37.
[5] D.W. Hein, T.D. Rustan, M.A. Doll, K.D. Bucher, R.J. Ferguson, Y. Feng, E.J. Furman, K. Gray, Acetyltransferases and susceptibility to chemicals, Toxicol Lett 64-65(1992)123.
[6] P.E. Hanna, N-acetyltransferases, O-acetyltransferases, and N, O-acetyltransferases: enzymology and bioactivation, Adv Pharmacol 27(1994)401.
[7] D.W. Hein, S. Boukouvala, D.M. Grant, R.F. Minchin, E. Sim, Changes in consensus arylamine N-acetyltransferase gene nomenclature, Pharmacogenet Genomics 18(4)(2008) 367.
[8] R. Yuliwulandari, Q. Sachrowardi, N. Nishida, M. Takasu, L. Batubara, T.P. Susmiarsih, J.T. Rochani, R. Wikaningrum, R. Miyashita, T. Miyagawa, A.S. Sofro, K.J. Tokunaga, Polymorphisms of promoter and coding regions of the arylamine N-acetyltransferase 2 (NAT2) gene in the Indonesian population: proposal for a new nomenclature, J Hum Genet; 53(3) (2008) 201.
[9] D.M. Grant, N.C. Hughes, S.A. Janezic, G.H. Goodfellow, H.J. Chen, A. Gaedigk, V.L. Yu, R. Grewal, Human acetyltransferase polymorphisms, Mutat Res 376(1–2) (1997) 61.
[10] N.J. Butcher, S. Boukouvala, E. Sim, R.F Minchin, Pharmacogenetics of the arylamine N-acetyltransferases, Pharmacogenomics J 2(1) (2002)30.
[11] D.W. Hein, Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis, Mutat Res 506-507(2002)65.
[12] E. Sim, I. Westwood, E. Fullam, Arylamine N-acetyltransferases, Expert Opin Drug Metab Toxicol;3(2)(2007)169.
[13] Sambrook et al., Molecular cloning: A laboratory manual. Vol.1. Cold Spring Harbor Laboratory Press (2001).
[14] Audrey Sabbagh, Andre Langaney, Pierre Darlu, Nathalie Gerard, Rajagopal Krishnamoorthy, and E. Poloni, Worldwide distribution of NAT2 diversity: Implications for NAT2 evolutionary history, BMC Genetics, 9(1), pp. 21.