Effects of Glutamate on the Reflex of Circulatory System under Hypoxic Condition
Main Article Content
Abstract
Abstract: In this study, we investigated the effects of glutamate, the neurontransmitter, on the reflex mechanism of circulatory system to hypoxia. Male Wistar rats were subjeted to hypoxic condition (10% O2 in N2). Glutamate were injected to cerebrospinal fluid of rats using Hamilton injector connecting with stereotaxic system with a constant velocity of 1 µl/s for 5 mins. Our results showed that glutamate reduced or suppressed the responses of circulatory system under hypoxic condition. A decrease in mean arterial pressure (55 - 66%) and an increase in heart rate (6 - 12%) in comparison with normal levels were observed. These data suggested that glutamate in cerebrospinal fluid may be a regulatory factor of circulatory system in response to hypoxic condition.
Keywords: Glutamate, hypoxia, circulation, heart rate.References
[1] V.T.Thu, B.T.Huong, L.T.Long, Aleksandrov V.G., Ảnh hưởng của Glutamate trong dịch não tủy lên chức năng hệ tuần hoàn tim mạch,Tạp chí Khoa học ĐHQGHN: Khoa học Y dược 32 No.1 (2016) 54.
[2] Rakin A.I., Aleksandrov V.G., Bui Thi H., Aleksandrova H.P, Glutamate has a modulatory effect on the reflex control of respiration, International Conference ”Advances in Pneumology”, Kassel, Germany (2013).
[3] Александров В.Г., Буй Тхи Хыонг, Александрова Н.П. Влияние повышенного церебрального уровня глутамата на состояние респираторной системы анестезированной крысы, Рос. физиол. журн. им. И.М. Сеченова 98 No.7 (2012) 845.
[4] Calvelo, M.G., Abboud, F.M., Ballard, D.R., Abdel-Sayed, W, Reflex vascular responses to stimulation of chemoreceptors with nicotine and cyanide, Circulation Research 27(1970) 259.
[5] Daly M. de B., Peripheral arterial chemoreceptors and the cardiovascular system, physiology of the Peripheral Arterial Chemoreceptors, Elsevier, Amsterdam (1983) 325.
[6] Daly M., Korner P.I., Angell-James J.E. et al,Cardiovascular-respiratory reflex interactions between carotid bodies and upper-airway receptors in the monkey, Am J Physiol 234 (1978) 293.
[7] Heistad D.D., Abboud F.M., Mark A.L., Schmid P.G, Effect of baroreceptor activity on ventilatory response to chemoreceptor stimulation, Journal of Applly Physiology 39 (1975a) 411.
[8] Korner P.I., Langsford G., Starr D., Uther J.B., Ward W., White S.W, The effects of chloralose-urethane and sodium pentobarbitone anaesthesia on the local and autonomic components of the circulatory response to arterial hypoxia, J. Physiol 199 (1968) 283.
[9] Trzebski A, Central pathways of the arterial chemoreceptor reflex. In H. Acker and R.G. O'Regan (Eds.). Physiology of the Peripheral Arterial Chemoreceptors, Elsevier, Amsterdam (1983).
[10] Abboud, F.M., Heistad, D.D., Mark, A.l., Schmid, P.G, Differential responses of the coronary circulation andother vascular beds to chemoreceptor stimulation, In: M.J. Purves (ed.): The peripheral arterial chemoreceptors, Cambridge University Press, London (1975) 427.
[11] Burton M.D., Kazemi H,Neurotransmitters in central respiratory control,Resp Physiol122 No.2-3 (2000) 111.
[12] Kalia M., Mesulam M.M, Brainstem projections of sensory and motor components of the vagus complex in the cat: 2. Laryngeal, tracheobronchial. pulmonary, cardiac, and gastrointestinal branches, J. Comp. Neurol 193 (1980b) 467.
[13] Kubo T., Kihara M, Evidence of receptor-mediated modulation of the aortic baroreceptor reflex in the rat nucleus tractus solitarii, Neuroscience Letters 87 No.1-2 (1988) 69.
[14] Lawrence A.J., Jarrott B, Neurochemical modulation of cardiovascular control in the nucleus tractus solitarius, Prog Neurobiol 48 No.1(1996) 21.
[15] Leone C., Gordon F.J,Is L-glutamate a neurotransmitter of baroreceptor information in the nucleus of the tractus solitarius, J Pharmacol Exp Ther250 No.3 (1989) 62.
[16] Poon C.S, Organization of central pathways mediating the Hering-Breuer reflex and carotid chemoreflex, Adv Exp Med Biol 55 No.1 (2004) 95.
[17] Seller H., Illert M, The localization of the first synapse in the carotid sinus baroreceptor reflex pathways and its alteration of the afferent input, Pflugers Arch, 306 (1969) 1-19.
[18] Törk I., McRitchie D.A., Rikard-Bell G.C., Paxinos G.Autonomic regulatory centers in the medulla oblongata.G Paxinos (Ed.), The Human Nervous System, Academic Press, San Diego, CA. (1990) 221.
[19] Zec N., Kinney H.C.Anatomic relationships of the human nucleus of the solitary tract in the medulla oblongata: a DiI labeling study, Autonomic Neuroscience 105-2 (2003) 131.
[20] Angell-James, J.E., Daly M, Some aspects of upper respiratory tract reflexes, Acta Otolaryngol 79 (1975) 242.
[21] Hehre D.A., Devia C.J., Bancalari E., Suguihara C, Brainstem amino acid neurotransmitters and ventilatory response to hypoxia in piglets, Pediatrics Research 63 (2008) 46.
[22] Fukuda Y., Sato A., Suzuki A. and Trzebski A, Autonomic nerve and cardiovascular responses to changing blood oxygen and carbon dioxide levels in the rat, Journal of the Autonomic Nervous System 28 (1989) 61.
[23] Kontos H.A., Vetrovec G.W., Richardson D.W, Role of carotid chemoreceptors in circulatory response to hypoxia in dogs, J Appl Physiol 2(1970) 561.
[24] Kubin L., Alheid G.F., Zuperku E.J., McCrimmon D.R. Central pathways of pulmonary and lower airway vagal afferents, J Appl Physiol 101 (2006) 618.
[25] Spyer K.M, Neural organization and control of the baroreceptor reflex, Rev. PhysioL BiochemPharmacol 23 (1981) 124.
[26] Александров В.Г., Буй Тхи Хыонг, Александрова Н.П. Влияние N-метил-D-аспартата на паттерн дыхания и состояние объёмно-зависимой обратной связи в системе дыхания анестезированной крысы. Известия РГПУ им. А.И. Герцена147. (2012) 103.
Persson P.B, Modulation of cardiovascular control mechanisms and their interaction, Physiol Rev. V 76 No.1 (1996) 193.