Zeolite Imidazole Framework-ZIF-8: Synthesis and Voltammetric Determination of Lead Ion Using Modified Electrode Based on ZIF-8
Main Article Content
Abstract
Abstract: Zeolite Imidazole Framework (ZIF-8) composite was prepared and used as a novel electrode modified for the determination of trace levels of lead. ZIF-8 shows quite a good capability for the efficient adsorption of lead from aqueous solutions. The parameters affecting the electrochemical process, such as types of electrodes, solvents, the amount of ZIF-8 suspension, electrolytic solution pH of were investigated. Under the optimal conditions, the electrochemical sensor exhibited a linear response to the concentration of lead in the range of 2-500 ppb with a detection limit of 8.6 ppb. The RSD is 6.88% and 6.93% at concentration of 5 ppb and 20 ppb, respectively.
Keywords: Zeolite Imidazole Framework (ZIF-8); Modified electrode; Differential Pulse Anodic Stripping Voltammetry; Bismuth film (BiF); Determination of Pb(II).
References
[1] J. Wang, Analytical Electrochemistry, 3rd Edition, John Wiley & Sons Inc., USA, 2006.
[2] A. Walcarius, “Mesoporous Materials-Based Electrochemical Sensors”, Electroanalysis 27 (2015) 1.
[3] A. Magheara, M. Etienne, M. Tertis¸, R. Sandulescu, A. Walcarius, “Clay-mesoporous silica composite films generated by electro-assisted self-assembly”, Electrochimica Acta 112 (2013) 333.
[4] M.M. Abdel-Galeil, M.M. Ghoneim, H.S. El-Desoky, T. Hattori, A. Matsuda, “Anodic Stripping Voltammetry Determination of Lead ions using Highly Sensitive Modified Electrodes Based on Multi-walled Carbon Nanotube”, Journal of Chemistry and Biochemistry 2 (2014) 25.
[5] A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’Keeffe, O.M. Yaghi, “Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks”, Accounts of Chemical Research 43 (2010) 58.
[6] R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, “High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture”, Science 319 (2008) 939.
[7] H. Hayashi, A.P. Cote, H. Furukawa, M.O’Keeffe, O.M. Yaghi, “Zeolite A imidazolate frameworks”, Nature Materials 6 (2007) 501.
[8] S.R. Venna, M.A. Carreon, “Highly Permeable Zeolite Imidazolate Framework-8 Membranes for CO2/CH4 Separation”, Journal of the American Chemical Society 132 (2010) 76.
[9] J. Mao, L. Yang, P. Yu, X. Wei, L. Mao, “Electrocatalytic four-electron reduction of oxygen with Copper (II)-based metal-organic frameworks”, Electrochemistry Communications 19 (2012) 29.
[10] H. Hosseini, H. Ahmar, A. Dehghani, A. Bagheri, A.R. Fakhari, M.M. Amini, “Au-SH-SiO2 nanoparticles supported on metal-organic framework (Au-SH-SiO2@Cu-MOF) as a sensor for electrocatalytic oxidation and determination of hydrazine”, Electrochimica Acta 88 (2013) 301.
[11] H. Hosseini, H. Ahmar, A. Dehghani, A. Bagheri, A. Tadjarodi, A.R. Fakhari, “A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of l-cysteine“, Biosensors and Bioelectronics 42 (2013) 426.
[12] Y. Wang, H. Ge, Y. Wu, Y. Guiqin, H. Chen, X. Hu, “Construction of an electrochemical sensor based on amino-functionalized metal-organic frameworks for differential pulse anodic stripping voltammetric determination of lead”, Talanta 129 (2014) 100.
[13] H.Y. Cho, J. Kim, S.N. Kim, W.S. Ahn, “High yield 1-L scale synthesis of ZIF-8 via a sonochemical route”, Microporous and Mesoporous Materials 169 (2013) 180.
[14] M. Zhua, D. Srinivas , S. Bhogeswararao, P. Ratnasamy, M.A. Carreon, “Catalytic activity of ZIF-8 in the synthesis of styrene carbonate from CO2 and styrene oxide”, Catalysis Communications 32 (2013) 36.
[15] M. Zhu, S.R. Venna, J.B. Jasinski and M.A. Carreon, “Room - Temperature Synthesis of ZIF-8: The Coexistence of ZnO Nanoneedles”, Chemistry of Materials 23 (2011) 3590.
[16] S. Eslava, L. Zhang, S. Esconjauregui, J. Yang, K. Vanstreels, M.R. Baklanov and E. Saiz, “Metal-Organic Framework ZIF-8 Films As Low-k Dielectrics in Microelectronic”, Chemistry of Materials 25 (2013) 27.
[17] Y. Du, R.Z. Chen, J.F. Yao, H.T. Wang, “Facile fabrication of porous ZnO by thermal treatment of zeolitic imidazolate framework-8 and its photocatalytic activity”, Journal of Alloys and Compounds 551 (2013) 125.
[18] J.C. Miller, J.N. Miller, Statistics and Chemometrics for Analytical Chemistry, 5th Ed., Pearson Education Limited, England 2005.
[19] M.K. Dey, A.K. Satpati, A.V.R. Reddy, “Electrodeposited antimony and antimony – gold nanocomposite modified carbon paste electrodes for the determination of heavy metal ions”, Analytical Methods 6 (2014) 5207..
[20] L. Wang, Z. Chen, M. Megharaj, R. Naidu, “Anodic stripping voltammetric determination of traces of PbII and CdII using a glassy carbon electrode modified with bismuth nanoparticles”, Microchimica Acta 181 (2014) 1199.
[21] M.M. Abdel-Galeil, M.M. Ghoneim, H.S. El-Desoky, T. Hattori, A. Matsuda, “Anodic stripping voltammetry determination of lead ions using highly sensitive modified electrodes based on multi-walled carbon nanotube”, Journal of Chemistry and Biochemistry 2 (2014) 25.
[22] S. Cerovac, V. Guzsvany, Z. Konya, A.M. Ashrafi., I. Svancara, S. Roncevic, A. Kukovecz, B. Dalmacija, K. Vytras, “Trace level voltammetric determination of lead and cadmium in sediment pore water by a bismuth-oxychloride particle-multiwalled carbon nanotube composite modified glassy carbon electrode”, Talanta 134 (2015) 640.
[23] N. Promphet, P. Rattanarat, R. Rangkupan, O. Chailapakul, N. Rodthongkum “An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium”, Sensors and Actuators B: Chemical 207 (2015) 526.
[24] F.C. Vicentini, T.A. Silva, A. Pellatieri, B.C. Janegitz, O. Fatibello-Filho, R.C. Faria “PbII determination in natural water using a carbon nanotubes paste electrode modified with crosslinked chitosan”, Microchemical Journal, 116 (2014) 191.