Identification of biological characteristics and preliminary research on genetic transformation of the Aspergillus niger TL8 strain isolated in Vietnam
Main Article Content
Abstract
Aspergillus niger is a mold commonly used in industrial production of many enzymes and organic acids. Because this fungus can produce different extracellular enzymes to degrade plant materials, it also causes the damages for some agricultural products at postharvest stages. In this study, we isolated a black mold strain named TL8 from a decayed dragon fruit. Based on morphological characteristics and the rDNA ITS (internal transcribed spacer) sequence, the TL8 strain was identified as A. niger. The A. niger TL8 strain is able to use different carbon sources for the growth and decay the peel of dragon fruits in vitro. In order to establish the basis for future studies on the mechanism of plant material decomposition of the fungus, we have successfully transferred and expressed the GFP reporter gene in this A. niger strain using the Agrobacterium tumefaciens-mediated transformation method and the hygromycin resistance marker.
References
[2] de Vries R. P. and Visser J., Aspergillus enzymes involved in degradation of plant cell wall polysaccharides, Microbiology and Molecular Biology Reviews 65 4 (2001) 497.
[3] Jørgensen T. R., Goosen T., van den Hondel C. A., Ram A. F. and Iversen J. J., Transcriptomic comparison of Aspergillus niger growing on two different sugars reveals coordinated regulation of the secretory pathway, BMC Genomics 10 1 (2009).
[4] Yuan X. L., Goosen C., Kools H., van der Maarel M. J., van den Hondel C. A., Dijkhuizen L. and Ram A. F., Database mining and transcriptional analysis of genes encoding inulin-modifying enzymes of Aspergillus niger, Microbiology 152 10 (2006) 3061.
[5] Michielse C. B., Hooykaas P. J., van den Hondel C. A. and Ram A. F., Agrobacterium-mediated transformation as a tool for functional genomics in fungi, Current Genetics 48 1 (2005) 1.
[6] de Groot M. J., Bundock P., Hooykaas P. and Beijersbergen A., Agrobacterium tumefaciens-mediated transformation of filamentous fungi, Nature Biotechnology 16 9 (1998) 839.
[7] Lazo G. R., Stein P. A. and Ludwig R. A., A DNA transformation–competent Arabidopsis genomic library in Agrobacterium, Nature Biotechnology 9 10 (1991) 963.
[8] Nguyễn Thị Khuyến, Võ Thị Hạnh, Phạm Thị Hiển, Mai Thị Đàm Linh, Trần Đức Long, Trần Thị Thùy Anh, Trịnh Tất Cường, Trần Văn Tuấn, Cải tiến phương pháp tách chiết ADN từ nấm sợi phục vụ chuẩn đoán phân tử phân biệt Aspergillus oryzae với Aspergillus flavus, Tạp chí Khoa học ĐHQGHN: Khoa học Tự nhiên và Công nghệ 31 4S (2015) 167.
[9] White T. J., Bruns T., Lee S. and Taylor J., Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, PCR Protocols: A Guide to Methods and Applications 18 1 (1990) 315.
[10] Li M., Zhou L., Liu M., Huang Y., Sun X. and Lu F., Construction of an engineering strain producing high yields of α-transglucosidase via Agrobacterium tumefaciens-mediated transformation of Aspergillus niger, Bioscience, Biotechnology and Biochemistry 77 9 (2013) 1860.
[11] Bennett J. W., An overview of the genus Aspergillus, Caiser Academic Press, Portland, 2010.
[12] Lorang J., Tuori R., Martinez J., Sawyer T., Redman R., Rollins J., Wolpert T., Johnson K., Rodriguez R. and Dickman M., Green fluorescent protein is lighting up fungal biology, Applied and Environmental Microbiology 67 5 (2001) 1987.
[13] Tran V. T., Braus-Stromeyer S. A., Kusch H.. Reusche M., Kaever A., Kuhn A., Valerius O., Landesfeind M., Asshauer K., Tech M., Hoff K., Pena-Centeno T., Stanke M., Lipka V. and Braus G. H., Verticillium transcription activator of adhesion Vta2 suppresses microsclerotia formation and is required for systemic infection of plant roots, New Phytologist 202 2 (2014) 565.
[14] Park S. M., Improved transformation of the filamentous fungus Aspergillus niger using Agrobacterium tumefaciens, Mycobiology 29 3 (2001) 132.