Nguyen Thi Thu Hang, Hoang Thi Thu Hang, Nguyen Hung Chi, Chu Hoang Ha, Nguyen Trung Nam

Main Article Content

Abstract

Influenza A/H5N1 virus evolves rapidly and generate new variants, therefore it is essential to develop effective vaccines against the currently circulating influenza strains. Among clades and subclades of highly pathogenic avian influenza (HPAI) H5N1 viruses circulating in Vietnam, H5N1 clade 1.1 and clade 2.3.2.1c possess genetic relationships to many strains of influenza; thus they are suggested to be used for producing vaccines against avian influenza. In this article, two HA gene segments of two types of A/H5N1 influenza clade have been designed: HA clade 1.1 gene consists 1825 nucleotides encoding 565 amino acids, HA clade 2.3.2.1c gene consists 1822 nucleotides, encoding 564 amino acids. Most importantly, nucleotide sequence of the pathogenic region of HA was removed. Each of the two HA segments corresponding to the two clades were successfully cloned into pHW2000 vector and will be used as a candidate for production of avian influenza vaccines using reverse genetics technique.


 

Keywords: Cloning, H5N1, HA, pHW2000, vaccine

References

[1] Lin T., Wang G., Li A., Zhang Q., Wu C., Zhang R., Cai Q., Song W., and Yuen K.Y. - The hemagglutinin structure of an avian H1N1 influenza A virus, Virology 392 (2009) 73.
[2] Bosch F. X., Garten W., Klenk H. D., and Rott R. - Proteolytic cleavage of influenza virus hemagglutinins, primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability DNA pathogenicity of avian influenza viruses, Virology 113 (1981) 725.
[3] Hoàng Thị Thu Hằng, Nguyễn Trung Nam, Nguyễn Thị Bích Nga, Đinh Duy Kháng, Lê Thanh Hòa, Lê Trần Bình - Áp dụng phương pháp đột biến điểm định hướng Phoenix để loại bỏ đoạn độc trong gen Hemagglutinin (HA) của virus cúm A/H5N1, Tạp chí Công nghệ Sinh học 6 (2008) 555.
[4] Thanh Hoa L., Nga T. B. N. – Evolutionary dynamics of highly pathogenic avian influenza A/H5N1 HA clades and vaccine implementation in Vietnam, Clinical and Experimental Vaccine Research 3 (2014) 117.
[5] Suzuki T., Takahashi T., Guo C. T., Kazuya I. P., Hidari J., Miyamoto D., and Goto H. - Sialidase activity of influenza A virus in an endocytic pathway enhances viral replication, Journal of Virology 79 (2005) 1170.
[6] Hoseinian H., Moghbeli M., Behzadian F. - Cloning of the gene encoding M2e of Influenza virus in B. Subtilis, Iranian Journal of Virology 7 (2013) 30.
[7] Ping J., Lopes T. J., Nidom C. A., Ghedin E., Macken C. A., Fitch A., Imai M., Maher E. A., Neumann G., and Kawaoka Y. - Development of high-yield influenza A virus vaccine viruses, Nature Communications 6 (2015) 8148.
[8] Shigaki T. and Hirschi K. D. - Use of class II restriction enzymes for site-directed mutagenesis: variations on Phoenix mutagenesis, Analytical Biochemistry 298 (2001) 118.
[9] Allemandou F., Nusberger J., Brunner H. R., and Brakch N. - Rapid site-directed mutagenesis using two-PCR-generated DNA fragments reproducing the plasmid template, Journal of Biomedicine and Biotechnology 3 (2003) 202.
[10] Hoffmann E., Stech J., Guan Y., Webster R. G., and Perez D. R. - Universal primer set for the full-length amplification of all influenza A viruses, Arch Virol 146 (2001) 2275.
[11] Hoffmann E., Krauss S., Perez D., and Webster R. G. - Eight-plasmid system for rapid generation of influenza virus vaccines, Vaccine 30 (2002) 3165.