Tran Thi Thu Huong, Duong Thi Thuy

Main Article Content

Abstract

The aim of this work was to investigate the influence of silver nanoparticles on green algae strain Chlorella vulgaris. The silver nanoparticles were synthesized by electrochemical method. Characterizations of these nanoparticles were determined by Transmission electron microscopy (TEM), Scanning Electron Microscope (SEM) and UV - VIS methods. Silver nanoparticles show growth inhibition against green algae Chlorella vulgaris. At concentration of 0.05; 0.1 and 1 mg/L of addition silver nanoparticles, the maximum anti-algal activity was observed after 10 days experiments. The grow inhibition reached > 90% was observed  at concentrations from 0.05 to 1mg/L.

Keywords: inhibition, silver nanomaterial, green algae, Chlorella vulgaris

References

[1]. Hulyal SB., Kaliwal BB. Dynamics of phytoplankton in relation to physico-chemical factors of Almatti reservoir of Bijapur District, Karnataka State. Environ Monit Assess. 153(1-4) (2009) 45.
[2]. Whitton BA., Potts M. The Ecology of Cyanobacteria. Their Diversity in Time and Space. 645p, (2000).
[3]. Stefan J. Hoeger, Bettina C. Hitzfeld, Daniel R. Dietricha. Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants. Toxicology and applied pharmacology 203 3 (2005) 231.
[4]. Oberholster, P.J., Botha, A.M., & Cloete. T.E. An overview of toxic cyanobacteria in South Africa with special reference to risk, impact and detection by molecular marker tools. Biokemistri, 17(2) (2005) 57.
[5]. Trần Thị Thu Hương và cộng sự. Ảnh hưởng của vật liệu nano bạc đến sinh trưởng của bèo Lemna sp. Tạp chí Công nghệ Sinh học 14(2) (2016) 1.
[6]. Shirai M., Matumaru K., Ohotake A., Takamura Y., Tokujiro A., Nakano M. Development of a Solid Medium for Growth and Isolation of Axenic Microcystis Strains (Cyanobacteria). Applie an environmental Microbiology (1989) 2569.
[7]. Park M.H., Kim K.H., Lee H.H., Kim J.S., Hwang S.J. Selective inhibitory potential of silver nanoparticles on the harmful cyanobac- terium Microcystis aeruginosa. Biotechnol Lett 32(3) (2010) 423.
[8]. Griffitt, R. J.; Weil, R.; Hyndman, K. A.; Denslow, N. D.; Powers, K.; Taylor, D.; Barber, D. S. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ. Sci. Technol 41 (23) (2007) 8178.
[9]. Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Sigg, L., Behra, R. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci.Technol 42 (2008) 8959.
[10]. Marambio J C and Hoek EMC. J. Nano. Research 12 (2010) 1531.
[11]. McLaughlin J and Bonzongo J C J. Environ Toxicol Chem 31 (2012) 68.
[12]. Thi Thuy Duong, Thanh Son Le, Thi Thu Huong Tran et al , Inhibition effect of engineered silver nanoparticles to bloom forming cyanobacteria, journal Adv. Nat. Sci.: Nanosci. Nanotechnol. issue 3, volume 7 (2016).
[13]. Qian H., Zhu K., Lu H., Lavoie M., Chen S., Zhou Z., Deng Z., Chen J., Fu Z. Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris: New insights from proteomic and physiological analyses. Science of the Total Environment 572 (2016) 1213.
[14]. Kalman J., Paul K.B., Khan F.R., Stone V., Fernandes T.F. Characterisation of bioaccumulation dynamics of three differently coated silver nanoparticles and aqueous silver in a simple freshwater food chain. Environmental Chemistry 12(6) (2016) 662.
[15]. Zhou G. J., Peng F. Q., Zhang L. J., Ying G. G. Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. Environ. Sci. Pollut. Res., 19(7) (2015) 2918.