Biopolymer Film Embedded ZnO Nanoparticles for Antimicrobial Application and Fresh Fruit Preservation
Main Article Content
Abstract
In this study, we reported on the synthesis of carboxymethyl cellulose biopolymer film containing ZnO nanoparticles (CMC – ZnO), oriented for antibacterial, and fruit preservation applications. The SEM and TEM image results show that the ZnO nanoparticles (ZnO NPs) on the CMC biopolymer film have a spherical structure that is irregularly agglomerated with each other. The CMC - ZnO biopolymer film has been proven to effectively inhibit the growth of E. coli. At the same time, it is considered a promising application in packaging and preserving fruits and foods. As a proof of concept, we used this CMC biopolymer film containing zinc oxide for avocado preservation. The results show that its freshness could be maintained for up to 35 days.
Keywords:
Carboxymethyl cellulose CMC, hạt nano ZnO nanoparticles, kháng khuẩn, bảo quản trái cây.
References
[1] B. Raj, U. K. Sankar, Siddaramaiah, Low Density Polyethylene/starch Blend Films for Food Packaging Applications, Adv. Polym. Technol, Vol. 23, 2004, pp. 32-45, https://doi.org/10.1002/ADV.10068.
[2] T. Huang, Y. Qian, J. Wei, C. Zhou, Polymeric Antimicrobial Food Packaging and Its Applications, Polymers, Vol. 11, 2019, pp. 560, https://doi.org/10.3390/POLYM11030560.
[3] A. Nešić, G. C. Barjas, S. D. Branković, S. Davidović, N. Radovanović, C. Delattre, Prospect of Polysaccharide-Based Materials as Advanced Food Packaging, Molecules, Vol. 25, 2019, pp. 135,
https://doi.org/10.3390/MOLECULES25010135.
[4] M. J. Fallourd, L. Viscione, Ingredient Selection for Stabilisation and Texture Optimisation of Functional Beverages and the Inclusion of Dietary Fibre, Funct. Spec. Bever. Technol., 2009, pp. 3-38, https://doi.org/10.1533/9781845695569.1.3.
[5] B. Fathi Achachlouei, Y. Zahedi, Fabrication and Characterization of CMC-based Nanocomposites Reinforced with Sodium Montmorillonite and TiO2 Nanomaterials, Carbohydr. Polym., Vol. 199, 2018, pp. 415-425,
https://doi.org/10.1016/J.CARBPOL.2018.07.031.
[6] A. María, D. P. Id, Antibacterial Activity of Nanomaterials, Nanomaterials, Vol. 8, 2018, pp. 359, https://doi.org/10.3390/NANO8060359.
[7] S. C. Cunnane, Zinc: Clinical and Biochemical Significance, CRC Press, 2018, https://doi.org/10.1201/9781351077811.
[8] I. Sheikhshoaie, N. Lotfi, J. Sieler, H. Krautscheid, M. Khaleghi, Synthesis, Structures and Antimicrobial Activities of Nickel(II) and Zinc(II) Diaminomaleonitrile-Based Complexes, Transit. Met. Chem., Vol. 43, 2018, pp. 555-562, https://doi.org/10.1007/s11243-018-0241-5.
[9] R. S. Yamgar, Y. Nivid, S. Nalawade, M. Mandewale, R. G. Atram, S. S. Sawant, Novel Zinc(II) Complexes of Heterocyclic Ligands as Antimicrobial Agents: Synthesis, Characterisation, and Antimicrobial Studies, Bioinorg. Chem. Appl., Vol. 2014, 2014, https://doi.org/10.1155/2014/276598.
[10] D. Salarbashi, S. A. Mortazavi, M. S. Noghabi, B. S. F. Bazzaz, N. Sedaghat, M. Ramezani,
I. S. Ghahfarrokhi, Development of New Active Packaging Film Made from a Soluble Soybean Polysaccharide Incorporating ZnO Nanoparticles, Carbohydr. Polym., Vol. 140, 2016, pp. 220-227, https://doi.org/10.1016/J.CARBPOL.2015.12.043.
[11] H. Mohammadi, A. Kamkar, A. Misaghi, Nanocomposite Films Based on CMC, Okra Mucilage and ZnO Nanoparticles: Physico Mechanical and Antibacterial Properties, Carbohydr. Polym., Vol. 181, 2018, pp. 351-357, https://doi.org/10.1016/J.CARBPOL.2017.10.045.
[12] L. Motelica, D. Ficai, O. Oprea, A. Ficai, R. D. Trusca, E. Andronescu, A. M. Holban, Biodegradable Alginate Films with ZnO Nanoparticles and Citronella Essential Oil-A Novel Antimicrobial Structure, Pharmaceutics, Vol. 13, 2021, pp. 1020, https://doi.org/10.3390/PHARMACEUTICS13071020.
[13] Y. Wang, J. Liu, T. Wang, L. Z. Liu, C. Tian, Y. Cui, W. Shao, X. Hua, Y. Shi, Y. Wang, Antibacterial Properties and Mechanism of Nanometer Zinc Oxide Composites, Food Packag, Shelf Life., Vol. 40, 2023, https://doi.org/10.1016/J.FPSL.2023.101167.
[14] Optical Properties of Zn-based Semiconductor Nanoparticles and Application in Two-barcode Encryption, 2015,https://www.researchgate.net/publication/299447590_Optical_Properties_of_ZnVbased_Semiconductor_Nanoparticles_and_Application_in_Two-barcode_Encryption (accessed on: August 19th, 2024).
[15] R. M. Atlas, Handbook of Microbiological Media, Handbook of Microbiological Media, 2010, https://doi.org/10.1201/EBK1439804063.
[16] E. Goldman, L. H. Green, Practical Handbook of MICROBIOLOGY: Second Edition, Practical Handbook of Microbiology: Second Edition , 2008, pp. 1-853, https://doi.org/10.1201/9781420009330.
[17] S. Sarwar, S. Chakraborti, S. Bera, I. A. Sheikh, K. M. Hoque, P. Chakrabarti, The Antimicrobial Activity of ZnO Nanoparticles Against Vibrio Cholerae: Variation in Response Depends on Biotype, Nanomedicine, Vol. 12, 2016, pp. 1499-1509, https://doi.org/10.1016/J.NANO.2016.02.006.
[18] M. Sajid, Efficiency of Calcium Chloride (CaCl2) Treatment on Post-harvest Performance of Pear (Pyrus Communis L.), Pure Appl. Biol., Vol. 8, 2019, pp. 1111-1125, https://doi.org/10.19045/bspab.2019.80053.
[19] M. Akram, I. Taha, M. M. Ghobashy, Low Temperature Pyrolysis of Carboxymethylcellulose, Cellulose, Vol. 23, 2016, pp. 1713-1724, https://doi.org/10.1007/s10570-016-0950-x.
[20] E. M. D. Melo, J. H. Clark, A. S. Matharu, The Hy-MASS Concept: Hydrothermal Microwave Assisted Selective Scissoring of Cellulose for in Situ Production of (Meso) Porous Nanocellulose Fibrils and Crystals, Green Chem., Vol. 19, 2017, pp. 3408-3417, https://doi.org/10.1039/C7GC01378G.
[21] S. Ramadhani, H. Helmiyati, Alginate/CMC/ZnO Nanocomposite for Photocatalytic Degradation of Congo Red Dye, in: AIP Conf Proc, American Institute of Physics Inc., 2020, pp. 040026, https://doi.org/10.1063/5.0008095.
[22] H. Morkoç, Ü. Özgür, General Properties of ZnO, in: Zinc Oxide, Wiley, 2009, pp. 1-76, https://doi.org/10.1002/9783527623945.ch1.
[23] J. Loste, J. M. L. Cuesta, L. Billon, H. Garay, M. Save, Transparent Polymer Nanocomposites: An Overview on their Synthesis and Advanced Properties, Prog. Polym. Sci., Vol. 89, 2019, pp. 133-158, https://doi.org/10.1016/j.progpolymsci.2018.10.003.
[24] J. Ning, X. Luo, F. Wang, S. Huang, J. Wang, D. Liu, D. Liu, D. Chen, J. Wei, Y. Liu, Synergetic Sensing Effect of Sodium Carboxymethyl Cellulose and Bismuth on Cadmium Detection by Differential Pulse Anodic Stripping Voltammetry, Sensors, Vol. 19, 2019, pp. 5482, https://doi.org/10.3390/S19245482.
[25] S. R. Ghazali, K. Kubulat, M. I. N. Isa, A. S. Samsudin, W. M. Khairul, Contribution of Methyl Substituent on the Conductivity Properties and Behaviour of CMC-Alkoxy Thiourea Polymer Electrolyte, Mol. Cryst. Liq. Cryst., Vol. 604, 2014, pp. 126-141, https://doi.org/10.1080/15421406.2014.968058.
[26] M. I. H. Mondal, M. S. Yeasmin, M. S. Rahman, Preparation of Food Grade Carboxymethyl Cellulose from Corn Husk Agrowaste, Int. J. Biol. Macromol., Vol. 79, 2015, pp. 144-150, https://doi.org/10.1016/J.IJBIOMAC.2015.04.061.
[27] M. Akhlaq, U. Mushtaq, S. Naz, M. Uroos, Carboxymethyl Cellulose-Based Materials as an Alternative Source for Sustainable Electrochemical Devices: A Review, RSC Adv., Vol. 13, 2023, pp. 5723-5743, https://doi.org/10.1039/D2RA08244F.
[28] V. Prasanna, T. N. Prabha, R. N. Tharanathan, Fruit Ripening Phenomena-An Overview, Crit. Rev. Food. Sci. Nutr., Vol. 47, 2007, pp. 1-19, https://doi.org/10.1080/10408390600976841.
[29] A. Tilley, M. P. McHenry, J. A. McHenry, V. Solah, K. Bayliss, Enzymatic Browning: The Role of Substrates in Polyphenol Oxidase Mediated Browning, Curr. Res. Food Sci., Vol. 7, 2023, pp. 100623,
https://doi.org/10.1016/J.CRFS.2023.100623.
[30] B. Raj, U. K. Sankar, Siddaramaiah, Low Density Polyethylene/Starch Blend Films for Food Packaging Applications, Adv. Polym. Technol., Vol. 23, 2004, pp. 32-45, https://doi.org/10.1002/ADV.10068.
[31] T. Huang, Y. Qian, J. Wei, C. Zhou, Polymeric Antimicrobial Food Packaging and Its Applications, Polymers, Vol. 11, 2019, pp. 560, https://doi.org/10.3390/POLYM11030560.
[32] A. Nešić, G. Cabrera-Barjas, S. Dimitrijević-Branković, S. Davidović, N. Radovanović, C. Delattre, Prospect of Polysaccharide-Based Materials as Advanced Food Packaging, Molecules, Vol. 25, 2019, pp. 135, https://doi.org/10.3390/MOLECULES25010135.
[33] M. J. Fallourd, L. Viscione, Ingredient Selection for Stabilisation and Texture Optimisation of Functional Beverages and the Inclusion of Dietary Fibre, Funct, Spec, Beverage Technol., 2009, pp. 3-38,
https://doi.org/10.1533/9781845695569.1.3.
[34] B. Fathi Achachlouei, Y. Zahedi, Fabrication and Characterization of CMC-Based Nanocomposites Reinforced with Sodium Montmorillonite and TiO2 Nanomaterials, Carbohydr. Polym., Vol. 199, 2018, pp. 415-425,
https://doi.org/10.1016/J.CARBPOL.2018.07.031.
[35] A. María, D. P. Id, Antibacterial Activity of Nanomaterials, Nanomaterials, Vol. 8, 2018, pp. 359, https://doi.org/10.3390/NANO8060359.
[36] S. C. Cunnane, Zinc: Clinical and Biochemical Significance, CRC Press, 2018, https://doi.org/10.1201/9781351077811.
[37] I. Sheikhshoaie, N. Lotfi, J. Sieler, H. Krautscheid, M. Khaleghi, Synthesis, Structures and Antimicrobial Activities of Nickel(II) and Zinc(II) Diaminomaleonitrile-based Complexes, Transit. Met. Chem., Vol. 43, 2018, pp. 555-562, https://doi.org/10.1007/s11243-018-0241-5.
[38] R. S. Yamgar, Y. Nivid, S. Nalawade, M. Mandewale, R. G. Atram, S. S. Sawant, Novel Zinc(II) Complexes of Heterocyclic Ligands as Antimicrobial Agents: Synthesis, Characterisation, and Antimicrobial Studies, Bioinorg, Chem. Appl., 2014, https://doi.org/10.1155/2014/276598.
[39] D. Salarbashi, S. A. Mortazavi, M. S. Noghabi, B. S. F. Bazzaz, N. Sedaghat, M. Ramezani, I. S. Ghahfarrokhi, Development of New Active Packaging Film Made from a Soluble Soybean Polysaccharide Incorporating ZnO Nanoparticles, Carbohydr. Polym., Vol. 140, 2016, pp. 220-227, https://doi.org/10.1016/J.CARBPOL.2015.12.043.
[40] H. Mohammadi, A. Kamkar, A. Misaghi, Nanocomposite Films Based on CMC, Okra Mucilage and ZnO Nanoparticles: Physico Mechanical and Antibacterial Properties, Carbohydr. Polym., Vol. 181, 2018, pp. 351-357, https://doi.org/10.1016/J.CARBPOL.2017.10.045.
[41] L. Motelica, D. Ficai, O. Oprea, A. Ficai, R. D. Trusca, E. Andronescu, A. M. Holban, Biodegradable Alginate Films with ZnO Nanoparticles and Citronella Essential Oil-A Novel Antimicrobial Structure, Pharmaceutics Vol. 13, 2021, pp. 1020, https://doi.org/10.3390/PHARMACEUTICS13071020.
[42] Y. Wang, J. Liu, T. Wang, L. Z. Liu, C. Tian, Y. Cui, W. Shao, X. Hua, Y. Shi, Y. Wang, Antibacterial Properties and Mechanism of Nanometer Zinc Oxide Composites, Food Packag, Shelf Life., Vol. 40, 2023, https://doi.org/10.1016/J.FPSL.2023.101167.
[43] Optical Properties of Zn-based Semiconductor Nanoparticles and Application in Two-barcode Encryption, 2015, https://www.researchgate.net/publication/299447590_Optical_Properties_of_Zn-based_Semiconductor_Nanoparticles_and_Application_in_Two-barcode_Encryption (accessed on: August 19 th, 2024).
[44] R. M. Atlas, Handbook of Microbiological Media, Handbook of Microbiological Media, 2010, https://doi.org/10.1201/EBK1439804063.
[45] E. Goldman, L. H. Green, Practical Handbook of MICROBIOLOGY: Second Edition, Practical Handbook of Microbiology: Second Edition, 2008, pp. 1-853, https://doi.org/10.1201/9781420009330.
[46] S. Sarwar, S. Chakraborti, S. Bera, I. A. Sheikh, K.M. Hoque, P. Chakrabarti, The Antimicrobial Activity of ZnO Nanoparticles Against Vibrio Cholerae: Variation in Response Depends on Biotype, Nanomedicine, Vol. 12, 2016, pp. 1499-1509, https://doi.org/10.1016/J.NANO.2016.02.006.
[47] M. Sajid, Efficiency of Calcium Chloride (Cacl2) Treatment on Post-Harvest Performance of Pear (Pyrus Communis L.), Pure Appl. Biol., Vol. 8, 2019, pp. 1111-1125, https://doi.org/10.19045/bspab.2019.80053.
[48] M. Akram, I. Taha, M. M. Ghobashy, Low Temperature Pyrolysis of Carboxymethylcellulose, Cellulose, Vol. 23, 2016, pp. 1713-1724, https://doi.org/10.1007/s10570-016-0950-x.
[49] E. M. De Melo, J. H. Clark, A. S. Matharu, The Hy-MASS Concept: Hydrothermal Microwave Assisted Selective Scissoring of Cellulose for in Situ Production of (Meso)Porous Nanocellulose Fibrils and Crystals, Green Chem., Vol. 19, 2017, pp. 3408-3417, https://doi.org/10.1039/C7GC01378G.
[50] S. Ramadhani, H. Helmiyati, Alginate/CMC/ZnO Nanocomposite for Photocatalytic Degradation of Congo Red Dye, in: AIP Conf Proc, American Institute of Physics Inc., 2020, pp. 040026, https://doi.org/10.1063/5.0008095.
[51] H. Morkoç, Ü. Özgür, General Properties of ZnO, in: Zinc Oxide, Wiley, 2009, pp. 1-76,
https://doi.org/10.1002/9783527623945.ch1.
[52] J. Loste, J. M. L. Cuesta, L. Billon, H. Garay, M. Save, Transparent Polymer Nanocomposites: An Overview on their Synthesis and Advanced Properties, Prog. Polym. Sci., Vol. 89, 2019,
pp. 133-158, https://doi.org/10.1016/j.progpolymsci.2018.10.003.
[53] J. Ning, X. Luo, F. Wang, S. Huang, J. Wang, D. Liu, D. Liu, D. Chen, J. Wei, Y. Liu, Synergetic Sensing Effect of Sodium Carboxymethyl Cellulose and Bismuth on Cadmium Detection by Differential Pulse Anodic Stripping Voltammetry, Sensors, Vol. 19, 2019, pp. 5482, https://doi.org/10.3390/S19245482.
[54] S. R. Ghazali, K. Kubulat, M. I. N. Isa, A. S. Samsudin, W. M. Khairul, Contribution of Methyl Substituent on the Conductivity Properties and Behaviour of CMC-Alkoxy Thiourea Polymer Electrolyte, Mol. Cryst. Liq. Cryst., Vol. 604, 2014, pp. 126-141, https://doi.org/10.1080/15421406.2014.968058.
[55] M. I. H. Mondal, M. S. Yeasmin, M. S. Rahman, Preparation of Food Grade Carboxymethyl Cellulose from Corn Husk Agrowaste, Int. J. Biol. Macromol., Vol. 79, 2015, pp. 144-150, https://doi.org/10.1016/J.IJBIOMAC.2015.04.061.
[56] M. Akhlaq, U. Mushtaq, S. Naz, M. Uroos, Carboxymethyl Cellulose-Based Materials as an Alternative Source for Sustainable Electrochemical Devices: A Review, RSC Adv., Vol. 13, 2023, pp. 5723-5743,
https://doi.org/10.1039/D2RA08244F.
[57] V. Prasanna, T. N. Prabha, R. N. Tharanathan, Fruit Ripening Phenomena-An Overview, Crit. Rev. Food Sci. Nutr., Vol. 47, 2007, pp. 1-19, https://doi.org/10.1080/10408390600976841.
[58] A. Tilley, M. P. McHenry, J. A. McHenry, V. Solah, K. Bayliss, Enzymatic Browning: The Role of Substrates in Polyphenol Oxidase Mediated Browning, Curr. Res. Food Sci., Vol. 7, 2023, pp. 100623, https://doi.org/10.1016/J.CRFS.2023.100623.
[59] M. D. Lieu, T. V. Phuong, T. T. B. Nguyen, T. K. T. Dang, T. H. Nguyen, A Review of Preservation Approaches for Extending Avocado Fruit Shelf-Life, J. Agric. Food Res., Vol. 16, 2024, pp. 101102, https://doi.org/10.1016/J.JAFR.2024.101102.
[60] O. B. Sogvar, M. K. Saba, A. Emamifar, R. Hallaj, Influence of Nano-ZnO on Microbial Growth, Bioactive Content and Postharvest Quality of Strawberries During Storage, Innov. Food Sci. Emerg. Technol., Vol. 35, 2016,
pp. 168-176, https://doi.org/10.1016/j.ifset.2016.05.005.
[61] X. Meng, M. Zhang, B. Adhikari, The Effects of Ultrasound Treatment and Nano-Zinc Oxide Coating on the Physiological Activities of Fresh-Cut Kiwifruit, Food Bioproc. Tech., Vol. 7, 2014, pp. 126-132, https://doi.org/10.1007/s11947-013-1081-0.
[62] M. K. Saba, R. Amini, Nano-Zno/Carboxymethyl Cellulose-Based Active Coating Impact on Ready-To-Use Pomegranate During Cold Storage, Food Chem., Vol. 232, 2017, Pp. 721-726,
https://doi.org/10.1016/J.FOODCHEM.2017.04.076.
[2] T. Huang, Y. Qian, J. Wei, C. Zhou, Polymeric Antimicrobial Food Packaging and Its Applications, Polymers, Vol. 11, 2019, pp. 560, https://doi.org/10.3390/POLYM11030560.
[3] A. Nešić, G. C. Barjas, S. D. Branković, S. Davidović, N. Radovanović, C. Delattre, Prospect of Polysaccharide-Based Materials as Advanced Food Packaging, Molecules, Vol. 25, 2019, pp. 135,
https://doi.org/10.3390/MOLECULES25010135.
[4] M. J. Fallourd, L. Viscione, Ingredient Selection for Stabilisation and Texture Optimisation of Functional Beverages and the Inclusion of Dietary Fibre, Funct. Spec. Bever. Technol., 2009, pp. 3-38, https://doi.org/10.1533/9781845695569.1.3.
[5] B. Fathi Achachlouei, Y. Zahedi, Fabrication and Characterization of CMC-based Nanocomposites Reinforced with Sodium Montmorillonite and TiO2 Nanomaterials, Carbohydr. Polym., Vol. 199, 2018, pp. 415-425,
https://doi.org/10.1016/J.CARBPOL.2018.07.031.
[6] A. María, D. P. Id, Antibacterial Activity of Nanomaterials, Nanomaterials, Vol. 8, 2018, pp. 359, https://doi.org/10.3390/NANO8060359.
[7] S. C. Cunnane, Zinc: Clinical and Biochemical Significance, CRC Press, 2018, https://doi.org/10.1201/9781351077811.
[8] I. Sheikhshoaie, N. Lotfi, J. Sieler, H. Krautscheid, M. Khaleghi, Synthesis, Structures and Antimicrobial Activities of Nickel(II) and Zinc(II) Diaminomaleonitrile-Based Complexes, Transit. Met. Chem., Vol. 43, 2018, pp. 555-562, https://doi.org/10.1007/s11243-018-0241-5.
[9] R. S. Yamgar, Y. Nivid, S. Nalawade, M. Mandewale, R. G. Atram, S. S. Sawant, Novel Zinc(II) Complexes of Heterocyclic Ligands as Antimicrobial Agents: Synthesis, Characterisation, and Antimicrobial Studies, Bioinorg. Chem. Appl., Vol. 2014, 2014, https://doi.org/10.1155/2014/276598.
[10] D. Salarbashi, S. A. Mortazavi, M. S. Noghabi, B. S. F. Bazzaz, N. Sedaghat, M. Ramezani,
I. S. Ghahfarrokhi, Development of New Active Packaging Film Made from a Soluble Soybean Polysaccharide Incorporating ZnO Nanoparticles, Carbohydr. Polym., Vol. 140, 2016, pp. 220-227, https://doi.org/10.1016/J.CARBPOL.2015.12.043.
[11] H. Mohammadi, A. Kamkar, A. Misaghi, Nanocomposite Films Based on CMC, Okra Mucilage and ZnO Nanoparticles: Physico Mechanical and Antibacterial Properties, Carbohydr. Polym., Vol. 181, 2018, pp. 351-357, https://doi.org/10.1016/J.CARBPOL.2017.10.045.
[12] L. Motelica, D. Ficai, O. Oprea, A. Ficai, R. D. Trusca, E. Andronescu, A. M. Holban, Biodegradable Alginate Films with ZnO Nanoparticles and Citronella Essential Oil-A Novel Antimicrobial Structure, Pharmaceutics, Vol. 13, 2021, pp. 1020, https://doi.org/10.3390/PHARMACEUTICS13071020.
[13] Y. Wang, J. Liu, T. Wang, L. Z. Liu, C. Tian, Y. Cui, W. Shao, X. Hua, Y. Shi, Y. Wang, Antibacterial Properties and Mechanism of Nanometer Zinc Oxide Composites, Food Packag, Shelf Life., Vol. 40, 2023, https://doi.org/10.1016/J.FPSL.2023.101167.
[14] Optical Properties of Zn-based Semiconductor Nanoparticles and Application in Two-barcode Encryption, 2015,https://www.researchgate.net/publication/299447590_Optical_Properties_of_ZnVbased_Semiconductor_Nanoparticles_and_Application_in_Two-barcode_Encryption (accessed on: August 19th, 2024).
[15] R. M. Atlas, Handbook of Microbiological Media, Handbook of Microbiological Media, 2010, https://doi.org/10.1201/EBK1439804063.
[16] E. Goldman, L. H. Green, Practical Handbook of MICROBIOLOGY: Second Edition, Practical Handbook of Microbiology: Second Edition , 2008, pp. 1-853, https://doi.org/10.1201/9781420009330.
[17] S. Sarwar, S. Chakraborti, S. Bera, I. A. Sheikh, K. M. Hoque, P. Chakrabarti, The Antimicrobial Activity of ZnO Nanoparticles Against Vibrio Cholerae: Variation in Response Depends on Biotype, Nanomedicine, Vol. 12, 2016, pp. 1499-1509, https://doi.org/10.1016/J.NANO.2016.02.006.
[18] M. Sajid, Efficiency of Calcium Chloride (CaCl2) Treatment on Post-harvest Performance of Pear (Pyrus Communis L.), Pure Appl. Biol., Vol. 8, 2019, pp. 1111-1125, https://doi.org/10.19045/bspab.2019.80053.
[19] M. Akram, I. Taha, M. M. Ghobashy, Low Temperature Pyrolysis of Carboxymethylcellulose, Cellulose, Vol. 23, 2016, pp. 1713-1724, https://doi.org/10.1007/s10570-016-0950-x.
[20] E. M. D. Melo, J. H. Clark, A. S. Matharu, The Hy-MASS Concept: Hydrothermal Microwave Assisted Selective Scissoring of Cellulose for in Situ Production of (Meso) Porous Nanocellulose Fibrils and Crystals, Green Chem., Vol. 19, 2017, pp. 3408-3417, https://doi.org/10.1039/C7GC01378G.
[21] S. Ramadhani, H. Helmiyati, Alginate/CMC/ZnO Nanocomposite for Photocatalytic Degradation of Congo Red Dye, in: AIP Conf Proc, American Institute of Physics Inc., 2020, pp. 040026, https://doi.org/10.1063/5.0008095.
[22] H. Morkoç, Ü. Özgür, General Properties of ZnO, in: Zinc Oxide, Wiley, 2009, pp. 1-76, https://doi.org/10.1002/9783527623945.ch1.
[23] J. Loste, J. M. L. Cuesta, L. Billon, H. Garay, M. Save, Transparent Polymer Nanocomposites: An Overview on their Synthesis and Advanced Properties, Prog. Polym. Sci., Vol. 89, 2019, pp. 133-158, https://doi.org/10.1016/j.progpolymsci.2018.10.003.
[24] J. Ning, X. Luo, F. Wang, S. Huang, J. Wang, D. Liu, D. Liu, D. Chen, J. Wei, Y. Liu, Synergetic Sensing Effect of Sodium Carboxymethyl Cellulose and Bismuth on Cadmium Detection by Differential Pulse Anodic Stripping Voltammetry, Sensors, Vol. 19, 2019, pp. 5482, https://doi.org/10.3390/S19245482.
[25] S. R. Ghazali, K. Kubulat, M. I. N. Isa, A. S. Samsudin, W. M. Khairul, Contribution of Methyl Substituent on the Conductivity Properties and Behaviour of CMC-Alkoxy Thiourea Polymer Electrolyte, Mol. Cryst. Liq. Cryst., Vol. 604, 2014, pp. 126-141, https://doi.org/10.1080/15421406.2014.968058.
[26] M. I. H. Mondal, M. S. Yeasmin, M. S. Rahman, Preparation of Food Grade Carboxymethyl Cellulose from Corn Husk Agrowaste, Int. J. Biol. Macromol., Vol. 79, 2015, pp. 144-150, https://doi.org/10.1016/J.IJBIOMAC.2015.04.061.
[27] M. Akhlaq, U. Mushtaq, S. Naz, M. Uroos, Carboxymethyl Cellulose-Based Materials as an Alternative Source for Sustainable Electrochemical Devices: A Review, RSC Adv., Vol. 13, 2023, pp. 5723-5743, https://doi.org/10.1039/D2RA08244F.
[28] V. Prasanna, T. N. Prabha, R. N. Tharanathan, Fruit Ripening Phenomena-An Overview, Crit. Rev. Food. Sci. Nutr., Vol. 47, 2007, pp. 1-19, https://doi.org/10.1080/10408390600976841.
[29] A. Tilley, M. P. McHenry, J. A. McHenry, V. Solah, K. Bayliss, Enzymatic Browning: The Role of Substrates in Polyphenol Oxidase Mediated Browning, Curr. Res. Food Sci., Vol. 7, 2023, pp. 100623,
https://doi.org/10.1016/J.CRFS.2023.100623.
[30] B. Raj, U. K. Sankar, Siddaramaiah, Low Density Polyethylene/Starch Blend Films for Food Packaging Applications, Adv. Polym. Technol., Vol. 23, 2004, pp. 32-45, https://doi.org/10.1002/ADV.10068.
[31] T. Huang, Y. Qian, J. Wei, C. Zhou, Polymeric Antimicrobial Food Packaging and Its Applications, Polymers, Vol. 11, 2019, pp. 560, https://doi.org/10.3390/POLYM11030560.
[32] A. Nešić, G. Cabrera-Barjas, S. Dimitrijević-Branković, S. Davidović, N. Radovanović, C. Delattre, Prospect of Polysaccharide-Based Materials as Advanced Food Packaging, Molecules, Vol. 25, 2019, pp. 135, https://doi.org/10.3390/MOLECULES25010135.
[33] M. J. Fallourd, L. Viscione, Ingredient Selection for Stabilisation and Texture Optimisation of Functional Beverages and the Inclusion of Dietary Fibre, Funct, Spec, Beverage Technol., 2009, pp. 3-38,
https://doi.org/10.1533/9781845695569.1.3.
[34] B. Fathi Achachlouei, Y. Zahedi, Fabrication and Characterization of CMC-Based Nanocomposites Reinforced with Sodium Montmorillonite and TiO2 Nanomaterials, Carbohydr. Polym., Vol. 199, 2018, pp. 415-425,
https://doi.org/10.1016/J.CARBPOL.2018.07.031.
[35] A. María, D. P. Id, Antibacterial Activity of Nanomaterials, Nanomaterials, Vol. 8, 2018, pp. 359, https://doi.org/10.3390/NANO8060359.
[36] S. C. Cunnane, Zinc: Clinical and Biochemical Significance, CRC Press, 2018, https://doi.org/10.1201/9781351077811.
[37] I. Sheikhshoaie, N. Lotfi, J. Sieler, H. Krautscheid, M. Khaleghi, Synthesis, Structures and Antimicrobial Activities of Nickel(II) and Zinc(II) Diaminomaleonitrile-based Complexes, Transit. Met. Chem., Vol. 43, 2018, pp. 555-562, https://doi.org/10.1007/s11243-018-0241-5.
[38] R. S. Yamgar, Y. Nivid, S. Nalawade, M. Mandewale, R. G. Atram, S. S. Sawant, Novel Zinc(II) Complexes of Heterocyclic Ligands as Antimicrobial Agents: Synthesis, Characterisation, and Antimicrobial Studies, Bioinorg, Chem. Appl., 2014, https://doi.org/10.1155/2014/276598.
[39] D. Salarbashi, S. A. Mortazavi, M. S. Noghabi, B. S. F. Bazzaz, N. Sedaghat, M. Ramezani, I. S. Ghahfarrokhi, Development of New Active Packaging Film Made from a Soluble Soybean Polysaccharide Incorporating ZnO Nanoparticles, Carbohydr. Polym., Vol. 140, 2016, pp. 220-227, https://doi.org/10.1016/J.CARBPOL.2015.12.043.
[40] H. Mohammadi, A. Kamkar, A. Misaghi, Nanocomposite Films Based on CMC, Okra Mucilage and ZnO Nanoparticles: Physico Mechanical and Antibacterial Properties, Carbohydr. Polym., Vol. 181, 2018, pp. 351-357, https://doi.org/10.1016/J.CARBPOL.2017.10.045.
[41] L. Motelica, D. Ficai, O. Oprea, A. Ficai, R. D. Trusca, E. Andronescu, A. M. Holban, Biodegradable Alginate Films with ZnO Nanoparticles and Citronella Essential Oil-A Novel Antimicrobial Structure, Pharmaceutics Vol. 13, 2021, pp. 1020, https://doi.org/10.3390/PHARMACEUTICS13071020.
[42] Y. Wang, J. Liu, T. Wang, L. Z. Liu, C. Tian, Y. Cui, W. Shao, X. Hua, Y. Shi, Y. Wang, Antibacterial Properties and Mechanism of Nanometer Zinc Oxide Composites, Food Packag, Shelf Life., Vol. 40, 2023, https://doi.org/10.1016/J.FPSL.2023.101167.
[43] Optical Properties of Zn-based Semiconductor Nanoparticles and Application in Two-barcode Encryption, 2015, https://www.researchgate.net/publication/299447590_Optical_Properties_of_Zn-based_Semiconductor_Nanoparticles_and_Application_in_Two-barcode_Encryption (accessed on: August 19 th, 2024).
[44] R. M. Atlas, Handbook of Microbiological Media, Handbook of Microbiological Media, 2010, https://doi.org/10.1201/EBK1439804063.
[45] E. Goldman, L. H. Green, Practical Handbook of MICROBIOLOGY: Second Edition, Practical Handbook of Microbiology: Second Edition, 2008, pp. 1-853, https://doi.org/10.1201/9781420009330.
[46] S. Sarwar, S. Chakraborti, S. Bera, I. A. Sheikh, K.M. Hoque, P. Chakrabarti, The Antimicrobial Activity of ZnO Nanoparticles Against Vibrio Cholerae: Variation in Response Depends on Biotype, Nanomedicine, Vol. 12, 2016, pp. 1499-1509, https://doi.org/10.1016/J.NANO.2016.02.006.
[47] M. Sajid, Efficiency of Calcium Chloride (Cacl2) Treatment on Post-Harvest Performance of Pear (Pyrus Communis L.), Pure Appl. Biol., Vol. 8, 2019, pp. 1111-1125, https://doi.org/10.19045/bspab.2019.80053.
[48] M. Akram, I. Taha, M. M. Ghobashy, Low Temperature Pyrolysis of Carboxymethylcellulose, Cellulose, Vol. 23, 2016, pp. 1713-1724, https://doi.org/10.1007/s10570-016-0950-x.
[49] E. M. De Melo, J. H. Clark, A. S. Matharu, The Hy-MASS Concept: Hydrothermal Microwave Assisted Selective Scissoring of Cellulose for in Situ Production of (Meso)Porous Nanocellulose Fibrils and Crystals, Green Chem., Vol. 19, 2017, pp. 3408-3417, https://doi.org/10.1039/C7GC01378G.
[50] S. Ramadhani, H. Helmiyati, Alginate/CMC/ZnO Nanocomposite for Photocatalytic Degradation of Congo Red Dye, in: AIP Conf Proc, American Institute of Physics Inc., 2020, pp. 040026, https://doi.org/10.1063/5.0008095.
[51] H. Morkoç, Ü. Özgür, General Properties of ZnO, in: Zinc Oxide, Wiley, 2009, pp. 1-76,
https://doi.org/10.1002/9783527623945.ch1.
[52] J. Loste, J. M. L. Cuesta, L. Billon, H. Garay, M. Save, Transparent Polymer Nanocomposites: An Overview on their Synthesis and Advanced Properties, Prog. Polym. Sci., Vol. 89, 2019,
pp. 133-158, https://doi.org/10.1016/j.progpolymsci.2018.10.003.
[53] J. Ning, X. Luo, F. Wang, S. Huang, J. Wang, D. Liu, D. Liu, D. Chen, J. Wei, Y. Liu, Synergetic Sensing Effect of Sodium Carboxymethyl Cellulose and Bismuth on Cadmium Detection by Differential Pulse Anodic Stripping Voltammetry, Sensors, Vol. 19, 2019, pp. 5482, https://doi.org/10.3390/S19245482.
[54] S. R. Ghazali, K. Kubulat, M. I. N. Isa, A. S. Samsudin, W. M. Khairul, Contribution of Methyl Substituent on the Conductivity Properties and Behaviour of CMC-Alkoxy Thiourea Polymer Electrolyte, Mol. Cryst. Liq. Cryst., Vol. 604, 2014, pp. 126-141, https://doi.org/10.1080/15421406.2014.968058.
[55] M. I. H. Mondal, M. S. Yeasmin, M. S. Rahman, Preparation of Food Grade Carboxymethyl Cellulose from Corn Husk Agrowaste, Int. J. Biol. Macromol., Vol. 79, 2015, pp. 144-150, https://doi.org/10.1016/J.IJBIOMAC.2015.04.061.
[56] M. Akhlaq, U. Mushtaq, S. Naz, M. Uroos, Carboxymethyl Cellulose-Based Materials as an Alternative Source for Sustainable Electrochemical Devices: A Review, RSC Adv., Vol. 13, 2023, pp. 5723-5743,
https://doi.org/10.1039/D2RA08244F.
[57] V. Prasanna, T. N. Prabha, R. N. Tharanathan, Fruit Ripening Phenomena-An Overview, Crit. Rev. Food Sci. Nutr., Vol. 47, 2007, pp. 1-19, https://doi.org/10.1080/10408390600976841.
[58] A. Tilley, M. P. McHenry, J. A. McHenry, V. Solah, K. Bayliss, Enzymatic Browning: The Role of Substrates in Polyphenol Oxidase Mediated Browning, Curr. Res. Food Sci., Vol. 7, 2023, pp. 100623, https://doi.org/10.1016/J.CRFS.2023.100623.
[59] M. D. Lieu, T. V. Phuong, T. T. B. Nguyen, T. K. T. Dang, T. H. Nguyen, A Review of Preservation Approaches for Extending Avocado Fruit Shelf-Life, J. Agric. Food Res., Vol. 16, 2024, pp. 101102, https://doi.org/10.1016/J.JAFR.2024.101102.
[60] O. B. Sogvar, M. K. Saba, A. Emamifar, R. Hallaj, Influence of Nano-ZnO on Microbial Growth, Bioactive Content and Postharvest Quality of Strawberries During Storage, Innov. Food Sci. Emerg. Technol., Vol. 35, 2016,
pp. 168-176, https://doi.org/10.1016/j.ifset.2016.05.005.
[61] X. Meng, M. Zhang, B. Adhikari, The Effects of Ultrasound Treatment and Nano-Zinc Oxide Coating on the Physiological Activities of Fresh-Cut Kiwifruit, Food Bioproc. Tech., Vol. 7, 2014, pp. 126-132, https://doi.org/10.1007/s11947-013-1081-0.
[62] M. K. Saba, R. Amini, Nano-Zno/Carboxymethyl Cellulose-Based Active Coating Impact on Ready-To-Use Pomegranate During Cold Storage, Food Chem., Vol. 232, 2017, Pp. 721-726,
https://doi.org/10.1016/J.FOODCHEM.2017.04.076.