Le Minh Cam, Le Van Khu, Nguyen Thi Thu Ha, Nguyen Ngoc Ha

Main Article Content

Abstract

Cobalt doped with Fe-MIL-88B was successfully synthesized in a solvothermal process using DMF as solvent and with/without NaOH. The samples were characterized using SEM, BET and TGA techniques. The partly substitution of Fe with Co does not change the octahedral shape of their parent Fe-MIL-88B. However, crystallization conducted in NaOH medium results in rod-like octahedral crystals. The BET specific surface area is 139cm2/g. The TGA data indicate that the presence of Co resulted in an increase in the thermal stability of the synthesized samples compared to parent Fe-MIL-88B. The CO2 adsorption isotherms in Fe-MIL-88B-Co samples were volumetrically measured at five different temperatures, namely 278K, 288K, 298K, 308K and 318K. The obtained results show that Fe-MIL-88B-Co is a potential adsorbent with a maximum adsortption capacity of 1.2312 mmol/g (at T= 278K). The sample synthesized in alkali medium exhibited a better adsorbent for CO2 storage.


Keywords:  


MIL, adsorption, CO2.


References


[1] S. Chu, Carbon Capture and Sequestration, Science 325 (2009) 1599. https://doi.org/10.1126/ science.1181637.
[2] R.S. Haszeldine, Carbon Capture and Storage: How Green Can Black Be, Science 325 (2009) 1647-1652. https://doi.org/10.1126/science. 1172246.
[3] D.M. D’Alessandro, B. Smit, J.R. Long, Carbon Dioxide Capture: Prospects for New Materials, Angew. Chem. Int. Ed. Engl. 49 (2010) 6058-6092. https://doi.org/10.1002/anie.201000431.
[4] S. Bai, J. Liu, J. Gao, Q. Yang, C. Li, Hydrolysis controlled synthesis of amine-functionalized hollow ethane–silica nanospheres as adsorbents for CO2 capture, Microporous Mesoporous Mater. 151 (2012) 474-480. https://doi.org/10.1016/j. micromeso. 2011.09.014.
[5] K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.H. Bae, J.R. Long, Carbon Dioxide Capture in Metal–Organic Frameworks, Chem. Rev. 112 (2012) 724-781. https://doi.org/10.1021/cr2003272.
[6] J.D. Carruthers, M.A. Petruska, E.A. Sturm, S.M. Wilson, Molecular sieve carbons for CO2 capture, Microporous Mesoporous Mater. 154 (2012) 62-67. https://doi.org/10.1016/j.micromeso.2011.07.016.
[7] X. Yan, L. Zhang, Y. Zhang, K. Qiao, Z. Yan, S. Komarneni, Amine-modified mesocellular silica foams for CO2 capture, Chem. Eng. Sci. 168 (2011) 918-924. https://doi.org/10.1016/j.cej. 2011. 01.066.
[8] A. Zukal, C.O. Arean, M.R. Delgado, P. Nachtigall, A. Pulido, J. Mayerova, J. Cˇejka, Combined volumetric, infrared spectroscopic and theoretical investigation of CO2 adsorption on Na-A zeolite, Microporous Mesoporous Mater. 146 (2011) 97-105. https://doi.org/10.1016/j. micromeso. 2011.03.034.
[9] S. Keskin, T.M. van Heest, D.S. Sholl, Can Metal–Organic Framework Materials Play a Useful Role in Large‐Scale Carbon Dioxide Separations?, ChemSusChem. 3 (2010) 879-891. https://doi.org/10.1002/cssc.201000114.
[10] T.M. McDonald, W.R. Lee, J.A. Mason, B.M. Wiers, C.S. Hong, J.R. Long, Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal–Organic Framework mmen-Mg2(dobpdc), J. Am. Chem. Soc. 134 (2012) 7056-7065. https://doi.org/ 10.1021/ja300034j.
[11] X. Yan, S. Komarneni, Z. Zhang, Z. Yan, Extremely enhanced CO2 uptake by HKUST-1 metal–organic framework via a simple chemical treatment, Microporous Mesoporous Mater. 183 (2014) 69–73. https://doi.org/10.1016/j. micromeso. 2013.09.009.
[12] G.T. Vuong, M.H. Pham, T.O. Do, Direct synthesis and mechanism of the formation of mixed metal Fe2Ni-MIL-88B, Cryst. Eng. Comm. 15 (2013) 9694-9703. https://doi.org/10.1039/ C3 CE41453A.
[13] L.V. Khu, N.Q. Anh, N.N. Ha, L.M. Cam, Synthesis, characterization and CO2 adsorption in Fe-MIL-88B, J. Cat. Ads. 4 (2015) 52-58.
[14] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquérol, T. Siemieniewska, Reporting Physisorption Data for Gas/Solid Systems With Special Reference to the Determination of Surface Area and Porosity, Pure Appl. Chem. 57 (1985) 603-619. https://doi.org /10.1351/pac198557040603.

Keywords: MIL, adsorption, CO2

References

[1] S. Chu, Carbon Capture and Sequestration, Science 325 (2009) 1599. https://doi.org/10.1126/ science.1181637.
[2] R.S. Haszeldine, Carbon Capture and Storage: How Green Can Black Be, Science 325 (2009) 1647-1652. https://doi.org/10.1126/science. 1172246.
[3] D.M. D’Alessandro, B. Smit, J.R. Long, Carbon Dioxide Capture: Prospects for New Materials, Angew. Chem. Int. Ed. Engl. 49 (2010) 6058-6092. https://doi.org/10.1002/anie.201000431.
[4] S. Bai, J. Liu, J. Gao, Q. Yang, C. Li, Hydrolysis controlled synthesis of amine-functionalized hollow ethane–silica nanospheres as adsorbents for CO2 capture, Microporous Mesoporous Mater. 151 (2012) 474-480. https://doi.org/10.1016/j. micromeso. 2011.09.014.
[5] K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.H. Bae, J.R. Long, Carbon Dioxide Capture in Metal–Organic Frameworks, Chem. Rev. 112 (2012) 724-781. https://doi.org/10.1021/cr2003272.
[6] J.D. Carruthers, M.A. Petruska, E.A. Sturm, S.M. Wilson, Molecular sieve carbons for CO2 capture, Microporous Mesoporous Mater. 154 (2012) 62-67. https://doi.org/10.1016/j.micromeso.2011.07.016.
[7] X. Yan, L. Zhang, Y. Zhang, K. Qiao, Z. Yan, S. Komarneni, Amine-modified mesocellular silica foams for CO2 capture, Chem. Eng. Sci. 168 (2011) 918-924. https://doi.org/10.1016/j.cej. 2011. 01.066.
[8] A. Zukal, C.O. Arean, M.R. Delgado, P. Nachtigall, A. Pulido, J. Mayerova, J. Cˇejka, Combined volumetric, infrared spectroscopic and theoretical investigation of CO2 adsorption on Na-A zeolite, Microporous Mesoporous Mater. 146 (2011) 97-105. https://doi.org/10.1016/j. micromeso. 2011.03.034.
[9] S. Keskin, T.M. van Heest, D.S. Sholl, Can Metal–Organic Framework Materials Play a Useful Role in Large‐Scale Carbon Dioxide Separations?, ChemSusChem. 3 (2010) 879-891. https://doi.org/10.1002/cssc.201000114.
[10] T.M. McDonald, W.R. Lee, J.A. Mason, B.M. Wiers, C.S. Hong, J.R. Long, Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal–Organic Framework mmen-Mg2(dobpdc), J. Am. Chem. Soc. 134 (2012) 7056-7065. https://doi.org/ 10.1021/ja300034j.
[11] X. Yan, S. Komarneni, Z. Zhang, Z. Yan, Extremely enhanced CO2 uptake by HKUST-1 metal–organic framework via a simple chemical treatment, Microporous Mesoporous Mater. 183 (2014) 69–73. https://doi.org/10.1016/j. micromeso. 2013.09.009.
[12] G.T. Vuong, M.H. Pham, T.O. Do, Direct synthesis and mechanism of the formation of mixed metal Fe2Ni-MIL-88B, Cryst. Eng. Comm. 15 (2013) 9694-9703. https://doi.org/10.1039/ C3 CE41453A.
[13] L.V. Khu, N.Q. Anh, N.N. Ha, L.M. Cam, Synthesis, characterization and CO2 adsorption in Fe-MIL-88B, J. Cat. Ads. 4 (2015) 52-58.
[14] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquérol, T. Siemieniewska, Reporting Physisorption Data for Gas/Solid Systems With Special Reference to the Determination of Surface Area and Porosity, Pure Appl. Chem. 57 (1985) 603-619. https://doi.org /10.1351/pac198557040603.