Microarray Data Analysis of as-induced Rice Roots by using Easygo and Mapman Softwares
Main Article Content
Abstract
Keywords
Asen, EasyGO, Mapman, microarray, Oryza sativa L.
References
[1] S.K. Panda, R.K. Upadhyay, S. Nath, Arsenic stress in plants. Journal of Agronomy and Crop Science 196 (2010) 161-174. https://doi.org/10. 1111/j.1439-037X.2009. 00407.x.
[2] M.A. Rahman, H. Hasengawa, M.M. Rahman, M.A Miah, A. Tasmin. Arsenic accumulation in rice (Oryza sativa L.): Human exposure through food chain. Ecotoxicology and Environmental Safety 69 (2008): 317-324. https://doi.org/10. 1016/j.ecoenv.2007.01.005.
[3] K.A. Marrs, The function and regulation of Glutathione S-transferase in plants. Plant Mol Biol 47 (1996) 127-58. https://doi.org/10.1146/ annurev.arplant.47.1.127.
[4] L.M. DelRazo, B. Quintanilla-Vega, E. Brambila-Colombres, E.S. Caldero ́n-Aranda, M. Manno, A. Albores, Stress proteins induced by Arsenic. Toxicology and Applied Pharmacology 177 (2001)132-148. https://doi.org/10.1006/taap. 2001.9291.
[5] T.L. Huang, Q.T.T. Nguyen, S.F. Fu, C.Y. Lin, Y.C. Chen, H.J. Huang, Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Molecular Biology 80 (2012) 587-608. https://link.springer.com/article/10.10 07/s11103-012-9969-z.
[6] O. Thimm, O. Bläsing, Y. Gibon, A. Nagel, S. Meyer, P. Krüger, J. Selbig, L.A. Müller, S.Y Rhee, M. Stitt, Mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal 37 (2004) 914-939. https://doi.org/10.1111/j.1365-313X.2004. 02016.x.
[7] J. Hartley-Whitker, G. Ainsworth, A.A. Meharg, Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant, Cell and Environment 24 (2001) 713-722. https://doi.org/10.1046/j.0016-8025.2001.00721.x.
[8] S. Mishara, A.B. Jha, R.S. Dubey, Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248 (2011) 565-577. https://doi.org/10.1007/s00709-010-0210-0.
[9] M. Chabannes, A. Barakate, C. Lapierre, J.M. Marita, Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants, The Plant 28 (2001): 257-270. https://doi.org/10. 1046/j.1365-313X.2001.01140.x.
[10] T. Goujon, V. Ferret, I. Mila, B. Pollet, Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta 217 (2003) 218-228. https://doi.org/10.1007/s00425-003-0987-6.
[11] C. Li, S. Feng, Y. Shoa, L. Jiang, X. Lu, X. Hou, Effects of arsenic on seed germination and physiological activities of wheat seedlings. Journal of Environmental Sciences. 19 (2007) 725-732. https://doi.org/10.1016/S1001-0742(07) 60121-1.
[12] A.A. Meharg, J. Harley-Whitaker, Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist 154 (2002) 29-43. https://doi.org/10.1046/j.1469-8137.2002.00363.x.
References
[2] M.A. Rahman, H. Hasengawa, M.M. Rahman, M.A Miah, A. Tasmin. Arsenic accumulation in rice (Oryza sativa L.): Human exposure through food chain. Ecotoxicology and Environmental Safety 69 (2008): 317-324. https://doi.org/10. 1016/j.ecoenv.2007.01.005.
[3] K.A. Marrs, The function and regulation of Glutathione S-transferase in plants. Plant Mol Biol 47 (1996) 127-58. https://doi.org/10.1146/ annurev.arplant.47.1.127.
[4] L.M. DelRazo, B. Quintanilla-Vega, E. Brambila-Colombres, E.S. Caldero ́n-Aranda, M. Manno, A. Albores, Stress proteins induced by Arsenic. Toxicology and Applied Pharmacology 177 (2001)132-148. https://doi.org/10.1006/taap. 2001.9291.
[5] T.L. Huang, Q.T.T. Nguyen, S.F. Fu, C.Y. Lin, Y.C. Chen, H.J. Huang, Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Molecular Biology 80 (2012) 587-608. https://link.springer.com/article/10.10 07/s11103-012-9969-z.
[6] O. Thimm, O. Bläsing, Y. Gibon, A. Nagel, S. Meyer, P. Krüger, J. Selbig, L.A. Müller, S.Y Rhee, M. Stitt, Mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal 37 (2004) 914-939. https://doi.org/10.1111/j.1365-313X.2004. 02016.x.
[7] J. Hartley-Whitker, G. Ainsworth, A.A. Meharg, Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant, Cell and Environment 24 (2001) 713-722. https://doi.org/10.1046/j.0016-8025.2001.00721.x.
[8] S. Mishara, A.B. Jha, R.S. Dubey, Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248 (2011) 565-577. https://doi.org/10.1007/s00709-010-0210-0.
[9] M. Chabannes, A. Barakate, C. Lapierre, J.M. Marita, Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants, The Plant 28 (2001): 257-270. https://doi.org/10. 1046/j.1365-313X.2001.01140.x.
[10] T. Goujon, V. Ferret, I. Mila, B. Pollet, Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta 217 (2003) 218-228. https://doi.org/10.1007/s00425-003-0987-6.
[11] C. Li, S. Feng, Y. Shoa, L. Jiang, X. Lu, X. Hou, Effects of arsenic on seed germination and physiological activities of wheat seedlings. Journal of Environmental Sciences. 19 (2007) 725-732. https://doi.org/10.1016/S1001-0742(07) 60121-1.
[12] A.A. Meharg, J. Harley-Whitaker, Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist 154 (2002) 29-43. https://doi.org/10.1046/j.1469-8137.2002.00363.x.