The Structure and Crystallization Process of Amorphous Iron Nanoparticles
Main Article Content
Abstract
Keywords
Iron nanoparticle, crystallize, annealing, crystal atom, crystal cluster.
References
[1] J.D. Honeycutt, C.H. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters, Journal of Physical Chemistry 91 (1987) 4950-4963. https://doi.org/ 10.1021/j100303a014.
[2] H. Shin, H.S. Jung, K.S. Hong and J.K. Lee, Crystallization process of TiO2 nanoparticles in an acidic solution, Chemistry letters 33 (2004) 1382-1383. https://doi.org/10.1246/cl.2004. 1382.
[3] D. Shi, Z. Li, Y. Zhang, X. Kou, L. Wang, J. Wang, J. Li, Synthesis and characterizations of amorphous titania nanoparticles, Nanoscience and Nanotechnology Letters 1 (2009) 165-170. https://doi.org/10.1166/nnl.2009.1037.
[4] D.N. Srivastava, N. Perkas, A. Gedanken, I. Felner, Sonochemical synthesis of mesoporous iron oxide and accounts of its magnetic and catalytic properties, The Journal of Physical Chemistry B 106 (2002) 1878-1883. https://doi. org/10.1021/jp015532w.
[5] N. Zaim, A. Zaim and M. Kerouad, The hysteresis behavior of an amorphous core/shell magnetic nanoparticle, Physica B: Condensed Matter 549 (2018) 102-106. https://doi.org/ 10.1016/j.physb. 2017.10.071.
[6] L. Gao and Q. Zhang, Effects of amorphous contents and particle size on the photocatalytic properties of TiO2 nanoparticles, Scripta materialia 44 (2001) 1195-1198. https://doi.org/ 10. 1016/S1359-6462(01)00681-9.
[7] G. Madras, B.J. McCoy, Kinetic model for transformation from nanosized amorphous TiO2 to anatase, Crystal growth & design 7 (2007) 250-253. https://doi.org/10.1021/cg060272z.
[8] C.I. Wu, J.W. Huang, Y.L. Wen, S.B. Wen, Y.H. Shen, M.Y. Yeh, Preparation of TiO2 nanoparticles by supercritical carbon dioxide, Materials Letters 62 (2008) 1923-1926. https://doi.org/10. 1016/j.matlet.2007.10.043.
[9] C. Pan, P. Shen and S.Y. Chen, Condensation and crystallization and coalescence of amorphous Al2O3 nanoparticles, Journal of crystal growth 299 (2007) 393-398. https://doi.org/ 10. 1016/j.jcrysgro.2006.12.006.
[10] M. Epifani, E. Pellicer, J. Arbiol, N. Sergent, T. Pagnier, J.R. Morante, Capping ligand effects on the amorphous-to-crystalline transition of CdSe nanoparticles, Langmuir 24 (2008) 11182-11188. https://doi.org/10.1021/la801859z.
[11] P.H. Kien, M.T. Lan, N.T. Dung, P.K. Hung, Annealing study of amorphous bulk and nanoparticle iron using molecular dynamics simulation. International Journal of Modern Physics B 28 (2014) 1450155 (17 page). https:// doi.org/10.1142/S0217979214501550.
[12] V.V. Hoang and N.H. Cuong, Local icosahedral order and thermodynamics of simulated amorphous Fe. Physica B: Condensed Matter 404 (2009) 340-346. https://doi.org/10.1016/ j.physb. 2008.10.057.
References
[2] H. Shin, H.S. Jung, K.S. Hong and J.K. Lee, Crystallization process of TiO2 nanoparticles in an acidic solution, Chemistry letters 33 (2004) 1382-1383. https://doi.org/10.1246/cl.2004. 1382.
[3] D. Shi, Z. Li, Y. Zhang, X. Kou, L. Wang, J. Wang, J. Li, Synthesis and characterizations of amorphous titania nanoparticles, Nanoscience and Nanotechnology Letters 1 (2009) 165-170. https://doi.org/10.1166/nnl.2009.1037.
[4] D.N. Srivastava, N. Perkas, A. Gedanken, I. Felner, Sonochemical synthesis of mesoporous iron oxide and accounts of its magnetic and catalytic properties, The Journal of Physical Chemistry B 106 (2002) 1878-1883. https://doi. org/10.1021/jp015532w.
[5] N. Zaim, A. Zaim and M. Kerouad, The hysteresis behavior of an amorphous core/shell magnetic nanoparticle, Physica B: Condensed Matter 549 (2018) 102-106. https://doi.org/ 10.1016/j.physb. 2017.10.071.
[6] L. Gao and Q. Zhang, Effects of amorphous contents and particle size on the photocatalytic properties of TiO2 nanoparticles, Scripta materialia 44 (2001) 1195-1198. https://doi.org/ 10. 1016/S1359-6462(01)00681-9.
[7] G. Madras, B.J. McCoy, Kinetic model for transformation from nanosized amorphous TiO2 to anatase, Crystal growth & design 7 (2007) 250-253. https://doi.org/10.1021/cg060272z.
[8] C.I. Wu, J.W. Huang, Y.L. Wen, S.B. Wen, Y.H. Shen, M.Y. Yeh, Preparation of TiO2 nanoparticles by supercritical carbon dioxide, Materials Letters 62 (2008) 1923-1926. https://doi.org/10. 1016/j.matlet.2007.10.043.
[9] C. Pan, P. Shen and S.Y. Chen, Condensation and crystallization and coalescence of amorphous Al2O3 nanoparticles, Journal of crystal growth 299 (2007) 393-398. https://doi.org/ 10. 1016/j.jcrysgro.2006.12.006.
[10] M. Epifani, E. Pellicer, J. Arbiol, N. Sergent, T. Pagnier, J.R. Morante, Capping ligand effects on the amorphous-to-crystalline transition of CdSe nanoparticles, Langmuir 24 (2008) 11182-11188. https://doi.org/10.1021/la801859z.
[11] P.H. Kien, M.T. Lan, N.T. Dung, P.K. Hung, Annealing study of amorphous bulk and nanoparticle iron using molecular dynamics simulation. International Journal of Modern Physics B 28 (2014) 1450155 (17 page). https:// doi.org/10.1142/S0217979214501550.
[12] V.V. Hoang and N.H. Cuong, Local icosahedral order and thermodynamics of simulated amorphous Fe. Physica B: Condensed Matter 404 (2009) 340-346. https://doi.org/10.1016/ j.physb. 2008.10.057.