Dang Van Long, Le Thanh Son, Pham Dinh Trong

Main Article Content

Abstract

Since NOx emission requirements from stationary and mobile sources are more strictly regulated in the United States, Europe, and other countries; researchers have conducted many studies to improve the performance of selective catalytic reduction (SCR) catalysts to meet more and more stringent emission standards. Herein, we reported the synthesis of small pore zeolite (Cu)-SSZ-13 using N,N,N-dimethylethylcyclohexylammonium as the structure directing agent. The catalytic activity of the fresh and hydrothermal aged copper exchanged supported on SSZ-13 catalyst was investigated in the SCR of NOx using NH3 as a reductant. Cu-SSZ-13 possessing a high SCR performance (NOx conversion reached approximately 100% at 250oC), and high hydrothermal stability in combination with an easy synthesis route is considered to be a potential catalyst for SCR application.

Keywords: Zeolite, SSZ-13, synthesis, SCR, NOx.

References

[1] Tian Peng, Wei Yingxu, Ye Mao, Liu Zhongmin, Methanol to Olefins (MTO): From Fundamentals to Commercialization. ACS Catalysis 5(3) (2015) 1922-1938. https://doi.org/10.1021/acscatal.5b00007.
[2] D. Chen, K. Moljord, A. Holmen, A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts. Microporous and Mesoporous Materials 164 (2012) 239-250. https://doi.org/10.1016/j.micromeso.2012.06.046.
[3] Yashodhan Bhawe, Manuel Moliner-Marin, Jonathan D. Lunn, Yu Liu, Andrzej Malek, Mark Davis, Effect of Cage Size on the
Selective Conversion of Methanol to Light
Olefins. ACS Catalysis 2(12) (2012) 2490-2495.
https:// doi.org/10.1021/cs300558x.
[4] Feng Gao, Ja Hun Kwak, Janos Szanyi,
Charles H. F. Peden, Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNOx Catalysts. Topics in Catalysis 56(15-17) (2013) 1441-1446. https://doi.org/10.1007/s11244-013-0145-8.
[5] S. Brandenberger, O. Kröcher, A. Tissler, R. Althoff, The State of the Art in Selective Catalytic Reduction of NOx by Ammonia Using Metal‐Exchanged Zeolite Catalysts. Catalysis Reviews 50(4) (2008) 493-498. https://doi.org/10.1080/01 614940802480122.
[6] A.M. Beale, F. Gao, I. Lezcano-Gonzalez, C.H.F. Peden, J. Szanyi, Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chemical Society Reviews 44(20) (2015) 7371-7378. https://doi.org/10.1039/ C5CS00108K.
[7] C. Paolucci, J.R. Di lorio, F.H. Ribeiro, R. Gounder, W.F. Schneider, Catalysis Science of NOx Selective Catalytic Reduction With Ammonia Over Cu-SSZ-13 and Cu-SAPO-34. Advances in Catalysis 59 (2016) 5-16. https://doi. org/10.1016/bs.acat.2016.10.002.
[8] Guan Bin, Zhan Reggie, Lin He, Huang Zhen, Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Applied Thermal Engineering 66(1) (2014) 396-411. https://doi.org/10.1016/j. applther maleng.2014.02.021.
[9] J. Steven Schmieg, H. Se Oh, H. Chang Kim, B. David Brown, H. Jong Lee, H.F. Charles Peden, Do Heui Kim, Thermal durability of Cu-CHA NH3-SCR catalysts for diesel NOx reduction. Catalysis Today 184(1) (2012) 252-253. https:// doi.org/10.1016/j.cattod.2011.10.034.
[10] Taekyung Ryu, Nak Ho Ahn, Seungwan Seo, Jung Cho, Hyojun Kim, Donghui Jo, Gi Tae Park,
Pyung Soon Kim, Chang Hwan Kim, Elliott L. Bruce, Paul A. Wright, In-Sik Nam, and
Suk Bong Hong, Fully Copper-Exchanged High-Silica LTA Zeolites as Unrivaled Hydrothermally Stable NH3-SCR Catalysts. Angewandte Chemie International Edition 56(12) (2017) 3256-3258. https://doi.org/10.1002/anie.201610547.
[11] Manuel Moliner, Cristina Franch, Eduardo Palomares, Marie Grill and Avelino Corma, Cu-SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chemical Communications 48(66) (2012) 8264-8266. https://doi.org/10.1039/C2CC33992G.
[12] Nuria Martín, Cristian R. Boruntea, Manuel Moliner, Avelino Corma, Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications. Chemical Communications 51(55) (2015) 11031-11032. https://doi.org/10.1039/C5CC03200H.
[13] Kim Young Jin, Lee Jun Kyu, Min Kyung Myung, Hong Suk Bong, Nam In-Sik, Cho Byong K., Hydrothermal stability of CuSSZ13 for reducing NOx by NH3. Journal of Catalysis 311 (2014) 447. https://doi.org/10.1016/j.jcat.2013.12.012.
[14] D.W. Fickel, R.F. Lobo, Copper Coordination in Cu-SSZ-13 and Cu-SSZ-16 Investigated by Variable-Temperature XRD. The Journal of Physical Chemistry C 114(3) (2010) 1633-1640. https://doi.org/10.1021/jp9105025.
[15] Takushi Sonoda, Toshihiro Maruo, Yoshitaka Yamasaki, Nao Tsunoji, Yasuyuki Takamitsu, Masahiro Sadakane and Tsuneji Sano, Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NOx with NH3. Journal of Materials Chemistry A 3(2) (2015) 857-865. https://doi.org/ 10.1039/C4TA05621C.
[16] G. Blakeman Philip, M. Burkholder Eric, Chen Hai-Ying, E. Collier Jillian, M. Fedeyko Joseph, Jobson Hoi, R. Rajaram Raj, The role of pore size on the thermal stability of zeolite supported Cu SCR catalysts. Catalysis Today 231(2014) 56-63. https://doi.org/10.1016/j.cattod.2013.10.047.
[17] C.M. Baerlocher, L.B. Database of Zeolite Structures. http://www.iza-structure.org/databases/, 2017.
[18] J.V. Smith, Crystal structures with a chabazite framework. I. Dehydrated Ca-chabazite. Acta Crystallographica 15(9) (1962) 838-843. https:// doi.org/10.1016/j.micromeso.2013.07.033.
[19] S.I. Zones, Conversion of faujasites to high-silica chabazite SSZ-13 in the presence of N,N,N-trimethyl-1-adamantammonium iodide. Journal of the Chemical Society, Faraday Transactions 87(22) (1991) 3710-3715. https://doi.org/ 10.1039/ FT9918703709.
[20] Ruinian Xu, Runduo Zhang, Ning Liu, Biaohua Chen, and Shi Zhang Qiao, Template Design and Economical Strategy for the Synthesis of SSZ-13 (CHA-Type) Zeolite as an Excellent Catalyst for the Selective Catalytic Reduction of NOx by Ammonia. ChemCatChem 7(23) (2015) 3842-3843. https://doi.org/10.1002/cctc.201500771.
[21] G. Cao, J.F. Brody, M.J. Shah, Light olefin selective oxygenate conversion process using CHA framework type aluminosilicate. https://patents. google.com/patent/US7772335B1/en, 2010.
[22] Guang Cao, Machteld M. Mertens, Anil S. Guram, Hailian Li, Jeffrey C. Yoder, Synthesis of chabazite-containing molecular sieves and their use in the conversion of oxygenates to olefins. https://patents.google.com/patent/US7754187B2/en, 2012.
[23] D. Trong Pham, R. Matthew Hudson, M. Craig Brown, F. Raul Lobo, Molecular Basis for the High CO2 Adsorption Capacity of Chabazite Zeolites. ChemSusChem 7(11) (2014) 3031-3037. https://doi.org/10.1002/cssc.201402555.
[24] M.A. Camblor, L.A. Villaescusa, M.J. Díaz-Cabañas, Synthesis of all-silica and high-silica molecular sieves in fluoride media. Topics in Catalysis 9(1-2) (1999) 62-65. https://doi.org/10. 1023/A:1019154304344.
[25] G. Delahay, B. Coq, S. Kieger, B. Neveu, The origin of N2O formation in the selective catalytic reduction of NOx by NH3 in O2 rich atmosphere on Cu-faujasite catalysts. Catalysis Today 54(4) (1999) 434-437. https://doi.org/10.1016/S0920-5861(99)00206-0.
[26] Norman Wilken, Kurnia Wijayanti, Krishna Kamasamudram, W. Neal Currier, Ramya Vedaiyan, Aleksey Yezerets, Louise Olsson, Mechanistic investigation of hydrothermal aging of Cu-Beta for ammonia SCR. Applied Catalysis B: Environmental 111(2012) 60-61. https://doi. org/10.1016/j.apcatb.2011.09.018.
[27] Jixing Liu, Weiyu Song, Chi Xu, Jian Liu, Zhen Zhao, Yuechang Wei, Aijun Duan and Guiyuan Jiang, The selective catalytic reduction of NOx over a Cu/ZSM-5/SAPO-34 composite catalyst. RSC Advances 5(127) (2015) 104923-104924. https://doi.org/10.1039/C5RA22234F.
[28] Oana Mihai, R. Catur Widyastuti, Stanislava Andonova, Krishna Kamasamudram, Junhui Li, Saurabh Y. Joshi, Neal W. Currier, Aleksey Yezerets, Louise Olsson, The effect of Cu-loading on different reactions involved in NH3-SCR over Cu-BEA catalysts. Journal of Catalysis 311 (2014) 174-175. https://doi.org/10.1016/j.jcat.2013.11.016.
[29] A.R. Ravishankara, J.S. Daniel, R.W. Portmann, Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 326(5949) (2009) 123-125. https://doi. org/10.1126/science.1176985.
[30] Hai-Ying Chen, Cu/Zeolite SCR Catalysts for Automotive Diesel NOx Emission Control, Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts (2014) 125-127. https://doi.org/ 10.1007/978-1-4899-8071-7¬¬-_5.
[31] Ja Hun Kwak, G. Russell Tonkyn, Do Heui Kim, János Szanyi, H.F. Charles Peden, Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. Journal of Catalysis 275(2) (2010) 187-189. https://doi.org/10.1016/j.jcat.2010.07.031.
[32] Ja Hun Kwak, G. Russell Tonkyn, Do Heui Kim, János Szanyi, H.F. Charles Peden, A comparative study of N2O formation during the selective catalytic reduction of NOx with NH3 on zeolite supported Cu catalysts. Journal of Catalysis 329 (2015) 495-497. https://doi.org/10.1016/j.jcat. 2015. 06.016.