Synthesis and Characterization of a Highly Ordered Mesoporous Bio-glass
Main Article Content
Abstract
A highly ordered mesoporous bio-glass has been successfully prepared by the sol-gel method, in which copolymer pluronic P123 was used as a structure-creating template. The obtained material has the mesoporous structure with the high value of specific surface area (395.6 m2 /g) and the 2D hexagonal pore architecture with the pore sizes from 5.5 to 7 nm. The ‘‘in vitro’’ experiment was effectuated by soaking the bio-glass powder in the simulated body fluid (SBF). The obtained results confirmed the bioactivity of the synthetic biomaterial through the quick formation of a hydroxyapatite layer after 1 day of immersion.
Keywords: Bio-glass, pore size, mesoporous, bioactivity, ‘‘in vitro’’.
References
[1] L.L. Hench, The story of Bioglass, Journal of Materials Science: Materials in Medicine, 17 (11) (2006) 967–978. https://doi.org/10.1007/s10856-006-0432-z.
[2] J.R. Jones, Review of bioactive glass: from Hench to hybrids, Acta Biomaterialia, 9 (2013) 4457–4486. https://doi.org/10.1016/j.actbio.08.023.
[3] H. Oudadesse, E. Dietrich, X.V. Bui, Y.L. Gal, P. Pellen, G. Cathelineau, Enhancement of cells proliferation and control of bioactivity of strontium doped glass, Applied Surface Science, 257 (20) (2011) 8587–8593. https://doi.org/10. 1016/j.apsusc.2011.05.022.
[4] O. Peitl, E.D. Zanotto, F.C. Serbena, L.L. Hench, Compositional and microstructural design of highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramics, Acta Biomaterialia, 8 (1) (2012) 321–332. https://doi.org/10.1016/j.actbio.2011.10.014.
[5] Z. Hong, A. Liu, L. Chen, X. Chen, X. Jing, Preparation of bioactive glass ceramic nanoparticles by combination of sol–gel and coprecipitation method, Journal of Non-Crystalline Solids, 355 (6) (2009) 368–372. https://doi.org/10.1016/j.jnoncrysol.2008.12.003.
[6] M. Vallet-Regi, Evolution of bioceramics within the field of biomaterials, Comptes Rendus Chimie, 13 (1) (2010) 174–185. https://doi.org/10.1016/ j.crci.2009.03.004.
[7] G.J. Owens, R.K. Singh, F. Foroutan, M. Alqaysi, C.M. Han, C. Mahapatra, H.W. Kim, J.C. Knowles, Sol–gel based materials for biomedical applications, Progress in Materials Science, 77 (2016) 1-79. https://doi.org/10.1016/j.pmatsci. 2015.12.001.
[8] K. Huang, S. Cai, G. Xu, M. Ren, X. Wang, R. Zhang, S. Niu, H. Zhao, Sol–gel derived mesoporous 58S bioactive glass coatings on AZ31 magnesium alloy and in vitro degradation behavior, Surface and Coatings Technology, 240 (2014) 137–144. https://doi.org/10.1016/j.surfcoat. 2013.12.026.
[9] M.E. Galarraga-Vinueza, J. Mesquita-Guimaraes, R. S. Magini, J. C. M. Souza, M. C. Fredel, and A. R. Boccaccini, ‘‘Mesoporous bioactive glass embedding propolis and cranberry antibiofilm compounds,’’ Journal of Biomedical Materials Research: Part A, vol. 106 (6) (2018), pp. 1614–1625. https://doi.org/10.1002/jbm.a.36352.
[10] D. Arcos, A. Lopez-Noriega, E. Ruiz-Hernandez, O. Terasaki, M. Vallet-Regi, Ordered mesoporous microspheres for bone grafting and drug delivery, Material Chemistry, 21 (6) (2009) 1000–1009, 2009. https://doi.org/10.1021/cm801649z.
[11] D. Arcos, and M. Vallet-Regi, ‘‘Sol–gel silica-based biomaterials and bone tissue regeneration,’’ Acta Biomaterial, vol. 6 (8) (2010) 2874–2888. https://doi.org/10.1016/j.actbio.2010.02.012.
[12] A. Anand, V. Lalzawmliana, V. Kumar, P. Das, K.B. Devi, A.K. Maji, B. Kundu, M. Roy, S.K. Nandi, Preparation and in vivo biocompatibility studies of different mesoporous bioactive glasses, Journal of the Mechanical Behavior of Biomedical Materials, 89 (2019) 89–98. https://doi.org/10. 1016/j.jmbbm.2018.09.024.
[13] X.V. Bui, T.H. Dang, Bioactive glass 58S prepared using an innovation sol-gel process, Processing and Application of Ceramics, 13 (1) (2019) 98-103. https://doi.org/10.2298/PAC1901098B.
[14] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity, Biomaterials, 27 (15) (2006) 2907-2915. https://doi.org/10.1016/j. biomaterials.2006.01.017.
[2] J.R. Jones, Review of bioactive glass: from Hench to hybrids, Acta Biomaterialia, 9 (2013) 4457–4486. https://doi.org/10.1016/j.actbio.08.023.
[3] H. Oudadesse, E. Dietrich, X.V. Bui, Y.L. Gal, P. Pellen, G. Cathelineau, Enhancement of cells proliferation and control of bioactivity of strontium doped glass, Applied Surface Science, 257 (20) (2011) 8587–8593. https://doi.org/10. 1016/j.apsusc.2011.05.022.
[4] O. Peitl, E.D. Zanotto, F.C. Serbena, L.L. Hench, Compositional and microstructural design of highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramics, Acta Biomaterialia, 8 (1) (2012) 321–332. https://doi.org/10.1016/j.actbio.2011.10.014.
[5] Z. Hong, A. Liu, L. Chen, X. Chen, X. Jing, Preparation of bioactive glass ceramic nanoparticles by combination of sol–gel and coprecipitation method, Journal of Non-Crystalline Solids, 355 (6) (2009) 368–372. https://doi.org/10.1016/j.jnoncrysol.2008.12.003.
[6] M. Vallet-Regi, Evolution of bioceramics within the field of biomaterials, Comptes Rendus Chimie, 13 (1) (2010) 174–185. https://doi.org/10.1016/ j.crci.2009.03.004.
[7] G.J. Owens, R.K. Singh, F. Foroutan, M. Alqaysi, C.M. Han, C. Mahapatra, H.W. Kim, J.C. Knowles, Sol–gel based materials for biomedical applications, Progress in Materials Science, 77 (2016) 1-79. https://doi.org/10.1016/j.pmatsci. 2015.12.001.
[8] K. Huang, S. Cai, G. Xu, M. Ren, X. Wang, R. Zhang, S. Niu, H. Zhao, Sol–gel derived mesoporous 58S bioactive glass coatings on AZ31 magnesium alloy and in vitro degradation behavior, Surface and Coatings Technology, 240 (2014) 137–144. https://doi.org/10.1016/j.surfcoat. 2013.12.026.
[9] M.E. Galarraga-Vinueza, J. Mesquita-Guimaraes, R. S. Magini, J. C. M. Souza, M. C. Fredel, and A. R. Boccaccini, ‘‘Mesoporous bioactive glass embedding propolis and cranberry antibiofilm compounds,’’ Journal of Biomedical Materials Research: Part A, vol. 106 (6) (2018), pp. 1614–1625. https://doi.org/10.1002/jbm.a.36352.
[10] D. Arcos, A. Lopez-Noriega, E. Ruiz-Hernandez, O. Terasaki, M. Vallet-Regi, Ordered mesoporous microspheres for bone grafting and drug delivery, Material Chemistry, 21 (6) (2009) 1000–1009, 2009. https://doi.org/10.1021/cm801649z.
[11] D. Arcos, and M. Vallet-Regi, ‘‘Sol–gel silica-based biomaterials and bone tissue regeneration,’’ Acta Biomaterial, vol. 6 (8) (2010) 2874–2888. https://doi.org/10.1016/j.actbio.2010.02.012.
[12] A. Anand, V. Lalzawmliana, V. Kumar, P. Das, K.B. Devi, A.K. Maji, B. Kundu, M. Roy, S.K. Nandi, Preparation and in vivo biocompatibility studies of different mesoporous bioactive glasses, Journal of the Mechanical Behavior of Biomedical Materials, 89 (2019) 89–98. https://doi.org/10. 1016/j.jmbbm.2018.09.024.
[13] X.V. Bui, T.H. Dang, Bioactive glass 58S prepared using an innovation sol-gel process, Processing and Application of Ceramics, 13 (1) (2019) 98-103. https://doi.org/10.2298/PAC1901098B.
[14] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity, Biomaterials, 27 (15) (2006) 2907-2915. https://doi.org/10.1016/j. biomaterials.2006.01.017.