Nguyen Huu Tho, Nguyen Thanh Trung

Main Article Content

Abstract

Geometries associated energy gap and electronic properties of adenine, DNA base interaction on the ZnO model cluster have been investigated by using density functional theory with the B3LYP exchange-correlation potential and effective core potential (ECP) LanL2DZ basis sets. The most stable interaction characteristics were analysed with respect to the binding energy, frontier orbital, elemental positions. Natural population analysis charge is also examined to understand the associated charge transfer in structures of cluster and complex. In the Zn-N bonding, combination coefficient from atom orbitals of nitrogen is much higher than that of zinc. The corresponding weight for this coefficient is 94.80%. The results of this study can serve as an orientation for the design of composite material in biomedical nanotechnology.

Keywords: B3LYP/LanL2DZ, binding energy, ZnO cluster, structure of clusters.

References

[1] J. Goldberger, D. J. Sirbuly, M. Law, P. Yang, ZnO Nanowire Transistors, J. Phys. Chem. B, 109(1) (2005) 9-14. https://doi.org/10.1021/jp04 52599.
[2] A. Fernando, K.L. Dimuthu M. Weerawardene, N. V. Karimova, and C. M. Aikens, Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters, Chem. Rev., 115(12) (2015) 6112–6216. https://doi.org/10.1021/cr500506r.
[3] J.M. Matxain, J.E. Fowler, J.M. Ugalde, Small clusters of II-VI materials: ZniOi, i=1-9, Phys. Rev. A, 62(5) (2000) 53201. https://doi.org/10. 1103/PhysRevA.62.053201.
[4] X. Lü, X. Xu, N. Wang, Q. Zhang, M. Ehara, and H. Nakatsuji, Cluster modeling of metal oxides: how to cut out a cluster?, Chem. Phys. Lett., 291(3–4) (1998) 445–452. https://doi.org/10. 1016/S0009-2614(98)00611-3.
[5] V. Staemmler et al., Stabilization of Polar ZnO Surfaces: Validating Microscopic Models by Using CO as a Probe Molecule, Phys. Rev. Lett., 90(10) (2003) 106102. https://doi.org/10.1103/ PhysRevLett.90.106102.
[6] K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley, and A. Punnoose, Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems, Appl. Phys. Lett., 90 (2007) 2139021–2139023. https://doi.org/10.1063/1.27 42324.
[7] V.L. Chandraboss, B. Karthikeyan, S. Senthilvelan, Experimental and first-principles study of guanine adsorption on ZnO clusters, Phys. Chem. Chem. Phys., 16(42) (2014) 23461–23475. https://doi.org/10.1039/C4CP03274H.
[8] Y.H. Ammar, M. H. Badran, A. Umar, H. Fouad, and Y. O. Alothman, ZnO Nanocrystal-Based Chloroform Detection: Density Functional Theory (DFT) Study, Coatings, 9(11) (2019) 769. https://doi.org/10.3390/coatings9110769.
[9] S. Dheivamalar and K. B. Banu, A DFT study on functionalization of acrolein on Ni-doped (ZnO)6 nanocluster in dye-sensitized solar cells, Heliyon, 5(12) (2019). https://doi.org/10.1016/j.heliyon. 2019.e02903.
[10] Tooba Afshari and Mohsen Mohsennia, Transition metals doped ZnO nanocluster for ethylene oxide detection: A DFT study, Main Group Metal Chemistry, 42(1) (2019) 113-120. https://doi.org/10.1515/mgmc-2019-0012.
[11] W.R. Wadt, P.J. Hay, Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, J. Chem. Phys., 82 (1985)284-298.https://doi.org/10.1063/1.448800.
[12] P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys., 82 (1985) 270–283. https://doi.org/10. 1063/1.448799.
[13] P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J. Chem. Phys., 82 (1985) 299–310. https://doi. org/10.1063/1.448975.
[14] M.J. Frisch H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A. F. Izma GWT. Gaussian 09, Revision C.01. Gaussian, Inc, Wallingford CT. 2010.
[15] N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, cclib: a library for package-independent computational chemistry algorithms, J. Comput. Chem., 29(5) (2008) 839–845. https://doi.org/10. 1002/jcc.20823.
[16] J.M. Matxain, J.M. Mercero, J.E. Fowler, J.M. Ugalde, Electronic Excitation Energies of ZniOi Clusters, J. Am. Chem. Soc., 125(31) (2003) 9494–9499. https://doi.org/10.1021/ja0264504.
[17] H.Y. Ammar, CH2O Adsorption on M (M = Li, Mg and Al) Atom Deposited ZnO Nano-Cage: DFT Study, Key Eng. Mater., 786 (2018) 384–392. https://doi.org/10.4028/www.scientific.net/ KEM.786.384.
[18] J. Beheshtian, A.A. Peyghan, Z. Bagheri, Adsorption and dissociation of Cl2 molecule on ZnO nanocluster, Appl. Surf. Sci., 258(20) (2012) 8171-8176. https://doi.org/10.1016/j.apsusc.2012. 05.016.
[19] B. Sanyal, A. Mookerjee, Study of the electronic and structural properties of ZnO clusters, Int. J. Mod. Phys. B, 24(17) (2010) 3297–3309. https://doi.org/10.1142/S0217979210052209.