Le Phan Cam Linh, Nguyen Van Ky, Pham Duy Long, Giang Hong Thai, Dang Thi Thanh Le, Nguyen Si Hieu

Main Article Content

Abstract

In this study, Li1-xNaxMn0.5Ni0.5O2 materials were successfully synthesized by co-precipitation following by solid state reaction method. X-ray powder diffraction analyses showed that the Li1-xNaxMn0.5Ni0.5O2 materials were single-phase and crystallized in a rhombohedral structure with a space group of R–3m at Na substitution concentrations of 0–20%. When increasing the concentration of Na substitution to 30%, diffraction peaks of Na2Mn3O7 as an impurity phase appeared in the X-ray diffraction pattern of the synthesized material. Rietveld refinements of the X-ray diffraction patterns revealed that the substitutions of Na for Li resulted in significant increments of the lattice constant c and slight increments of the lattice constant a. The results of galvanostatic charge/discharge measurements showed that the substitutions reduced the specific capacity but improved the rate capability of the Li0.8Na0.2Mn0.5Ni0.5O2 in comparison with the LiMn0.5Ni0.5O2 material.
Keywords: lithium ion battery, layered transition metal oxide, Na subsitution.

References

[1] Y-L. Ding, Z. P. Cano, A-P. Yu, J. Lu, Z-W Chen, Automotive Li-Ion Batteries: Current Status and Future Perspectives, Electrochem. Energ. Rev. 2 (2019) 1-28. https://doi.org/10.1007/s41918-018-0022-z.
[2] M. Osiak, H. Geaney, E. Armstrong, C. O'Dwyer, Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance, J. Mater. Chem. A 2 (2014) 9433-9460. https://doi.org/10.1039/C4TA00534A.
[3] W-D Li, B-H Song, A. Manthiram, High-voltage positive electrode materials for lithium-ion batteries, Chem. Soc. Rev. 46 (2017) 3006-3059. https://doi.org/10.1039/C6CS00875E.
[4] T. Ohzuku, Y. Makimura, Layered Lithium Insertion Material of LiNi1/2Mn1/2O2: A Possible Alternative to LiCoO2 for Advanced Lithium-Ion Batteries, Chem. Lett. 30 (2001) 744-745. https://doi.org/10.1246/cl.2001.744.
[5] X-Q Yang, J. McBreen, W-S Yoon, C. P. Grey, Crystal structure changes of LiMn0.5Ni0.5O2 cathode materials during charge and discharge studied by synchrotron based in situ XRD, Electrochem. Commun. 4 (2002) 649-654. https://doi.org/10.1016/S1388-2481(02)00406-X.
[6] Y. Liu, B. Chen, F. Cao, X. Zhao and J. Yuan, Synthesis of nanoarchitectured LiNi0.5Mn0.5O2 spheres for high-performance rechargeable lithium-ion batteries via an in situ conversion route, J. Mater. Chem. 21 (2011) 10437-10441. https://doi.org/10.1039/C1JM10408J.
[7] Y-Y. Wang, Y-Y. Sun, S. Liu, G-R. Li, X-P. Gao, Na-Doped LiNi0.8Co0.15Al0.05O2 with Excellent Stability of Both Capacity and Potential as Cathode Materials for Li-Ion Batteries, ACS Appl. Energy Mater. 1 (2018) 3881-3889. https://doi.org/10.1021/acsaem.8b00630.
[8] W. Hua, J. Zhang, Z. Zheng, W. Liu, X. Peng, X-D. Guo, B. Zhong, Y-J. Wang, X. Wang, Na-doped Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode material with both high rate capability and high tap density for lithium ion batteries, Dalton Trans. 43 (2014) 14824-14832. https://doi.org/10.1039/ C4DT01611D.
[9] M. Casas-Cabanas, J. Rodríguez-Carvajal, J. Canales-Vázquez, Y. Laligant, P. Lacorre, M.R. Palacín, Microstructural characterisation of battery materials using powder diffraction data: DIFFaX, FAULTS and SH-FullProf approaches, J. Power Sources 174 (2) (2007) 414-420. https:// doi.org/10.1016/j.jpowsour.2007.06.216.
[10] A. Kumar, R. Nazzario, L. Torres-Castro, A. Pena-Duarte, M. S. Tomar, Electrochemical properties of MgO-coated 0.5Li2MnO3-0.5LiNi0.5Mn0.5O2 composite cathode material for lithium ion battery, Int. J. Hydrog. Energy 40 (14) (2015) 4931-4935. https://doi.org/10.1016/j.ijhy dene.2015.01.104.
[11] P. Zheng, J. Su, Y. Wang, W. Zhou, J. Song, Q. Su, N. Reeves‐McLaren, S. Guo, A High‐Performance Primary Nanosheet Heterojunction Cathode Composed of Na0.44MnO2 Tunnels and Layered Na2Mn3O7 for Na‐Ion Batteries, ChemSusChem 13 (2020) 1793-1799. https://doi. org/10.1002/cssc.201903543.
[12] S‐M. Park, T‐H. Cho, M. Yoshio, Novel Synthesis Method for Preparing Layered Li[Mn1/2Ni1/2]O2 as a Cathode Material for Lithium Ion Secondary Battery, Chem. Lett. 33 (2004) 748-749. https://doi.org/10.1246/cl.2004. 748.
[13] X. Meng, S. Dou, W-L. Wang, High power and high capacity cathode material LiNi0.5Mn0.5O2 for advanced lithium-ion batteries, J. Power Sources 184 (2008) 489-493. https://doi.org/10.1016/j. jpowsour.2008.04.015.
[14] R.Zhao, Z. Yang, J. Liang, D. Lu, C. Liang, X. Guan, A. Gao, H. Chen, Understanding the role of Na-doping on Ni-rich layered oxide LiNi0.5Co0.2Mn0.3O2, J. Alloys Compd. 689 (2016) 318-325. https://doi.org/10.1016/j.jallcom.2016. 07.230.
[15] Z. Huang, Z. Wang, Q. Jing, H. Guo, X. Li, Z. Yang, Investigation on the effect of Na doping on structure and Li-ion kinetics of layered LiNi0.6Co0.2Mn0.2O2 cathode material, Electrochim. Acta 192 (2016) 120-126. https:// doi.org/10.1016/j.electacta.2016.01.139.
[16] Z. Chen, T. Xie, L. Li, M. Xu, H. Zhu, W. Wang, Characterization of Na-substituted LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion battery, Ionics 20 (2014) 629-634. https://doi. org/10.1007/s11581-013-1022-y.
[17] D-L Vu, J-W Lee, Na-doped layered LiNi0.8Co0.1Mn0.1O2 with improved rate capability and cycling stability, J. Solid State Electrochem. 22 (2018) 1165-1173. https://doi.org/10.1007/s 10008-017-3863-1.
[18] H. Kim, A. Choi, S. W. Doo, J. Lim, Y. J. Kim, K. T. Lee, Role of Na+ in the Cation Disorder of [Li1-xNax]NiO2 as a Cathode for Lithium-Ion Batteries, J. Electrochem. Soc. 165 (2018) A201-A205. https://doi.org/10.1149/2.0771802jes.
[19] S. Zhang, C. Deng, B.L. Fu, S.Y. Yang, L. Ma, Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method, Powder Technol. 198 (2010) 373-380. https://doi.org/10.1016/j.powtec. 2009.12.002.
[20] Y. Zhang, H. Cao, J. Zhang, B. Xia, Synthesis of LiNi0.6Co0.2Mn0.2O2 cathode material by a carbonate co-precipitation method and its electrochemical characterization, Solid State Ion. 177 (2006) 3303-3307. https://doi.org/10.1016/j. ssi.2006.09.008.
[21] J-S. Seo, J-W Lee, Fast growth of the precursor particles of Li(Ni0.8Co0.16Al0.04)O2 via a carbonate co-precipitation route and its electrochemical performance, J. Alloy Compd. 694 (2017) 703-709. https://doi.org/10.1016/j.jallcom.2016.10.062.
[22] X. Wang, X. Li, X. Sun, F. Li, Q. Liu, Q. Wang, D. He, Nanostructured NiO electrode for high rate Li-ion batteries, J. Mater. Chem. 21 (2011) 3571-3573. https://doi.org/10.1039/C0JM04356G.
[23] J. Carrasco, Role of van der Waals Forces in Thermodynamics and Kinetics of Layered Transition Metal Oxide Electrodes: Alkali and Alkaline-Earth Ion Insertion into V2O5, J. Phys. Chem. C 118 (2014) 19599-19607. https://doi. org/10.1021/jp505821w.
[24] J. Wu, N. Sharma, Alkali-Metal Modification of Li(Ni0.33Mn0.33Co0.33)O2, Aust. J. Chem. 72 (2019) 600-606. https://doi.org/10.1071/CH19114.