Nguyen Van Ha, Nguyen Thi Thu Hang

Main Article Content

Abstract

Electronic structures of a series of three homodinuclear platinum(II), palladium(II) and gold(I) complexes featuring Janus-type benzoxazolin-2-ylidene bridges and N,N-diisopropyl benzimidazolin-2-ylidene auxiliary ligands have been investigated. The gas-phase molecular structures of all compounds were first optimized using B3PW91 functional and SDD/6-31G(d) combination of basis sets. The nature of their frontier orbitals were then examined. The higher energy occupied molecular orbitals are predominantly d orbital of the metal in combination with p orbital of N,N-diisopropyl benzimidazolin-2-ylidene. On the other hand, the lower energy unoccupied molecular orbitals are p orbitals of the benzoxazolin-2-ylidene. TD-DFT calculations reveal that all the complexes require high energy ultraviolet photon for excitation and photoexcitations form excited state with decreased electron density on metal centers.

Keywords: N-heterocyclic carbene, electronic structures, benzoxazolin-2-ylidene, platinum(II), palladium(II), gold(I) complex.

References

[1] D. Bourissou, O. Guerret, F.P. Gabbaï, G. Bertrand, Stable Carbene, Chem. Rev. 100 (2000) 39-92. https://doi.org/10.1021/cr940472u.
[2] N. Marion, S.P. Nolan, Well-Defined N-Heterocyclic Carbenes−Palladium(II) Precatalyst for Cross-Coupling Reactions, Acc. Chem. Res. 41 (2008) 1440-1449. https://doi.org/10.1021/ar800020y.
[3] F.E. Hahn, M.C. Jahnke, Heterocyclic carbenes: synthesis and coordination chemistry, Angew. Chem., Int. Ed. 47 (2008) 3122-3172. http://doi.org/10.1002/anie.200703883.
[4] M.N. Hopkinson, C. Richter, M. Schedler, F. Glorius, An overview of N-heterocyclic carbenes, Nature 510 (2014) 485-496. https://doi.org/nature13384.
[5] W.A. Herrmann, N‐Heterocyclic Carbenes: A New Concept in Organometallic Catalysis, Angew. Chem., Int. Ed. 41 (2002) 1290-1309, https://doi.org/10.1002/1521-3773%2820020415%2941%3A8%3C1290%3A%3AAID-ANIE1290%3E3.0.CO%3B2-Y.
[6] S. Díez-Gonzalez, N. Marion, S.P. Nolan, N-Heterocyclic Carbenes in Late Transition Metal Catalysis, Chem. Rev. 109 (2009) 3612-3676. https://doi.org/10.1021/cr900074m.
[7] L. Cavallo, A. Correa, C. Costabile, H.J. Jacobsen, Steric and electronic effects in the bonding of N-heterocyclic ligands to transition metals, Organomet. Chem. 690 (2005) 5407-5413. https://doi.org/10.1016/j.jorganchem.2005.07.012.
[8] H. Clavier, S.P. Nolan, Percent buried volume for phosphine and N-heterocyclic carbeneligands: steric properties in organometallic chemistry, Chem. Commun. 46 (2010) 841-861. https://doi.org/10.1039/B92298
4A.
[9] W. P. Fehlhammer, U. Z. Plaia, Metallkomplexe funktioneller Isocyanide, XIII Bis(oxazolidin-2-yliden)-Komplexe von Mangan(I) und Nickel(II) / Metal Complexes of Functional Isocyanides, XIII Bis(oxazolidin-2-ylidene) Complexes of Manganese(I) and Nickel(II), Naturforsch., B: J. Chem. Sci. 41 (1986) 1005-1010. https://doi.org/10.1515/znb-1986-0813.
[10] M. Meier, T. T. Y. Tan, F. E. Hahn, H. V. Huynh, Donor Strength Determination of Benzoxazolin-2-ylidene, Benzobisoxazolin-2-ylidene, and Their Isocyanide Precursors by 13C NMR Spectroscopy of Their PdII and AuI Complexes. Organometallics, 36 (2017) 275-284. http://doi.org/ 10.1021/acs.organomet. 6b00736.
[11] R. W. Y. Sun, A. L. F. Chow, X. H. Li, J. J. Yan, S. S. Y. Chui, C. M. Che, Luminescent cyclometalated platinum(II) complexes containing N-heterocyclic carbene ligands with potent in vitro and in vivo anti-cancer properties accumulate in cytoplasmic structures of cancer cells, Chem. Sci., 2 (2011) 728-736. http://doi.org/10.1039/c0sc00593b.
[12] A. Biffis, P. Centomo, A. D. Zotto, M. Zecca, Pd Metal Catalysts for Cross-Couplings and Related Reactions in the 21st Century: A Critical Review, Chem. Rev. 118 (2018) 2249-2295. http://doi.org/10.1021/acs.chemrev.7b00443.
[13] T. Strassner, Phosphorescent Platinum(II) Complexes with C^C* Cyclometalated NHC Ligands, Acc. Chem. Res. 49 (2016), 2680-1689. http://doi.org/ 10.1021/acs.accounts.6b00240.
[14] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46 (1992) 6671-6687. https://doi.org/10.1103/PhysRevB.46.6671.
[15] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys. 72 (1980), 650-654. https://doi.org/10.1063/1.438955.
[16] D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Energy-adjustedab initio pseudopotentials for the second and third row transition elements: Molecular test for M2 (M=Ag, Au) and MH (M=Ru, Os). Theor. Chim. Acta, 78 (1991) 247-266. https://doi.org/10.1007/BF01112848.
[17] P. Schwerdtfeger, M. Dolg, W. H. Eugen Schwarz, A. B. Graham, P. D. W. Boyd. Relativistic effects in gold chemistry. I. Diatomic gold compounds. J. Chem. Phys. 91 (1989) 1762-1774. https://doi.org/10.1063/1.4
57082.
[18] M. Bouché, G. Dahm, A. Maisse-François, T. Achard, S. Bellemin-Laponnaz, Selective Formation of cis-N-Heterocyclic Carbene-PtII-Pnictogen Complexes and in vitro Evaluation of Their Cytotoxic Activities toward Cancer Cells, Eur. J. Inorg. Chem. (2016) 2828-2836. https://doi.org/ 10.1002/ejic.201600296.
[19] V. H. Nguyen, B. M. El Ali, H. V. Huynh, Stereoelectronic Flexibility of Ammonium-Functionalized Triazole-Derived Carbenes: Palladation and Catalytic Activities in Water, Organometallics, 37 (2018) 2358-2367. https://doi.org/10.1021/acs.organomet.8b00347.