Nguyen Thi Thanh Hai, Ton Nu My Phuong, Nguyen Viet Luong, Dao Khac Toan, Tran Thai Hoa, Nguyen Thi Thu Thuy

Main Article Content

Abstract

In this study, copper-silica nanocomposites were synthesized by using silica nanoparticles extracted from rice husks as carriers for copper nanoparticles.  Copper-silica nanocomposites (Cu-silicaNPs) were synthesized  by a simple and effectively chemical reduction process with hydrazine as a reducing agent. Cu-silica NPs were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission microscopy, infrared spectroscopy and energy-dispersive X-ray spectroscopy. The average size of nanocomposite materials is about 20 nm. Cu-silica NPs products had a high inhibitory effect on Pyricularia oryzae and Rhizoctonia solani, causing rice blast and sheath blight.

Keywords: Copper nanoparticles, silica nanoparticles, nanocomposites, antifungal activity, Pyricularia oryzae, Rhizoctonia solani.

References

[1] C.P. Poole Jr, F.J. Owens, Introduction to nanotechnology, John Wiley & Sons, New Jersey, 2003.
[2] M.G. Lines, Nanomaterials for practical functional uses, Journal of Alloys and Compounds 449 (2008) 242-245. https://doi.org/ 10.1016/j.jallcom.2006.02.082.
[3] S. Yokoyama, H. Takahashi, T. Itoh, K. Motomiya, K. Tohji, Synthesis of metallic Cu nanoparticles by controlling Cu complexes in aqueous solution, Advanced Powder Technology 25 (2014) 999-1006. https://doi.org/10.1016/j.apt. 2014.01.024.
[4] R. Kaur, C. Giordano, M. Gradzielski, S. K. Mehta, Synthesis of highly stable, water-dispersible copper nanoparticles as catalysts for nitrobenzene reduction, Chemistry - An Asian Journal 9 (2014) 189–198. https://doi.org/10. 1002/asia.201300809.
[5] M. Salavati-Niasari, F. Davar, N. Mir, Synthesis and characterization of metallic copper nanoparticles via thermal decomposition, Polyhedron 27 (2008) 3514–3518. https://doi.org/ 10.1016/j.poly.2008.08.020.
[6] B.K. Park, S. Jeong, D. Kim, J. Moon, S. Lim, J. S. Kim, Synthesis and size control of monodisperse copper nanoparticles by polyol method, Journal of Colloid and Interface Science 311 (2007) 417–424. https://doi.org/10.1016/j. jcis.2007.03.039.
[7] H.X. Zhang, U. Siegert, R. Liu, W. Bin Cai, Facile fabrication of ultrafine copper nanoparticles in organic solvent, Nanoscale Research Letters 4 (2009) 705–708. https://doi.org/10.1007/s11671-009-9301-2.
[8] J. Moghimi-Rad, F. Zabihi, I. Hadi, S. Ebrahimi, T. D. Isfahani, and J. Sabbaghzadeh, Effect of ultrasound radiation on the size and size distribution of synthesized copper particles, Journal of Materials Science 45 (2010) 3804–3811.https://doi.org/10.1007/s10853-010-4435-2.
[9] N.A. Dhas, C.P. Raj, A. Gedanken, Synthesis, characterization and properties of metallic, Chem. Mater 4756 (1998) 1446–1452. https://doi.org/10. 1021/cm9708269.
[10] I. Lisiecki, M.P. Pileni, Synthesis of copper metallic clusters using reverse micelles as microreactors, Journal of the American Chemical Society 115 (1993) 3887–3896. https://doi.org/10. 1021/ja00063a006.
[11] S. Jeong et al., Controlling the Thickness of the Surface Oxide Layer on Cu Nanoparticles for the Fabrication of Conductive Structures by Ink-Jet Printing, Advanced Functional Materials 18 (2008) 679–686. https://doi.org/10.1002/adfm. 200700902.
[12] C. Salzemann, I. Lisiecki, A. Brioude, J. Urban, M.P. Pileni, Collections of copper nanocrystals characterized by different sizes and shapes: optical response of these nanoobjects, The Journal of Physical Chemistry B 108 (2004) 13242–13248. https://doi.org/10.1021/jp048491n.
[13] S. Chen, J.M. Sommers, Alkanethiolate- protected copper nanoparticles: spectroscopy, electrochemistry and solid-state morphological evolution, The Journal of Physical Chemistry B 105 (2001) 8816–8820. https://doi.org/10.1021/ jp011280n.
[14] J. Peszke et al., Unique properties of silver and copper silica-based nanocomposites as antimicrobial agents, RSC Advances 7 (2017) 28092–28104. https://doi.org/10.1039/C7RA0072 0E.
[15] X. Cheng, X. Zhang, H. Yin, A. Wang, and Y. Xu, Modifier effects on chemical reduction synthesis of nanostructured copper, Applied Surface Science 253 (2006) 2727–2732. https://doi.org/10.1016/j.apsusc.2006.05.125.
[16] Y.H. Kim, D.K. Lee, H.G. Cha, C.W. Kim, Y.C. Kang, Y.S. Kang, Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles, Journal of Physical Chemistry B 110 (2006) 24923–24928. https:// doi.org/10.1021/jp0656779.
[17] C.C. Trapalis, M. Kokkoris, G. Perdikakis, G. Kordas, Study of antibacterial composite Cu/SiO2 thin coatings, Journal of Sol-Gel Science and Technology 26 (2003) 1213–1218. https://doi. org/10.1023/A:1020720504942.
[18] N. Cioffi et al., Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties, Chemistry of Materials 17 (2005) 5255–5262. https://doi.org/10.1021/cm0505244.
[19] H. Zhang et al., Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation, ACS Nano 6 (2012) 4349–4368. https://doi.org/10.1021/nn3010087.
[20] A. Azam, A.S. Ahmed, M. Oves, M. S. Khan, and A. Memic, Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and -negative bacterial strains, International Journal of Nanomedicine 7 (2012) 3527–3535. https://doi.org/10.2147/IJN.S29020.
[21] G. Applerot et al., Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress, Small 8 (2012) 3326–3337. https://doi.org/10.1002/smll.201200 772.
[22] J.S. Kim et al., Antimicrobial effects of silver nanoparticles, Nanomedicine: Nanotechnology, Biology and Medicine 3 (2007) 95–101. https://doi.org/10.1016/j.nano.2006.12.001.
[23] M. Raffi et al., Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annals of Microbiology 60(1) (2010) 75–80. https://doi.org/10.1007/s13213-010-0015-6.
[24] M. Dulski et al., Impact of temperature on the physicochemical, structural and biological features of copper-silica nanocomposites, Materials Science and Engineering C 107 (2020) 110274. https://doi.org/10.1016/j.msec.2019.110 274.
[25] F. Vandevenne, E. Struyf, W. Clymans, P. Meire, Agricultural silica harvest: have humans created a new loop in the global silica cycle?, Frontiers in Ecology and the Environment 10 (2012) 243–248. https://doi.org/10.1890/110046.
[26] J.F. Ma, E. Takahashi, Soil, fertilizer, and plant silicon research in Japan, Elsevier, 2002.
[27] T.T.T. Linh, V.Đ. Quang, The role of silicon in crops, Proceedings of the National Workshop on Effective Utilization of Fertilizer Van Dien in Vietnam 28/5/2015 (2015) 268–281. (in Vietnamese)
[28] F. C. Lanning, Plant constituents, silicon in rice, Journal of Agricultural and Food Chemistry 11 (1963) 435–437. https://doi.org/10.1021/jf60129a 024.
[29] P.J. Van Soest, Rice straw, the role of silica and treatments to improve quality, Animal Feed Science and Technology 130 (2006) 137–171. https://doi.org/10.1016/j.anifeedsci.2006.01.023.
[30] M.S. Usman, M.E. El Zowalaty, K. Shameli, N. Zainuddin, M. Salama, N.A. Ibrahim, Synthesis, characterization, and antimicrobial properties of copper nanoparticles, International Journal of Nanomedicine 8 (2013) 4467–4479. https://doi. org/10.2147/IJN.S50837.
[31] R.M.A. Elamawi, R.A.S. El-Shafey, Inhibition effects of silver nanoparticles against rice blast disease caused by magnaporthe grisea, Egypt. J. Agric. Res 91 (2013) 1271–1281.
[32] K. Giannousi, G. Sarafidis, S. Mourdikoudis, A. Pantazaki, C. Dendrinou-Samara, Selective synthesis of Cu2O and Cu/Cu2O NPs: antifungal activity to yeast saccharomyces cerevisiae and DNA interaction, Inorganic Chemistry 53 (2014) 9657–9666. https://doi.org/10.1021/ic501143z.
[33] C. Dong, H. Cai, X. Zhang, C. Cao, Synthesis and characterization of monodisperse copper nanoparticles using gum acacia, Physica E: Low-Dimensional Systems and Nanostructures 57 (2014) 12–20. https://doi.org/10.1016/j.physe. 2013.10.025.
[34] P.H. Gaskell, J.M. Parker, E. Davis, Structure of noncrystalline materials, Cambridge, U. K, 1983.
[35] A.E. Geissberger, F.L. Galeener, Raman studies of vitreous SiO2 versus fictive temperature, Physical Review B 28 (1983) 3266. https://doi.org/10. 1103/PhysRevB.28.3266.
[36] H. Aguiar, J. Serra, P. González, B. León, Structural study of sol – gel silicate glasses by IR and Raman spectroscopies, Journal of Non-Crystalline Solids 355 (2009) 475–480. https://doi.org/10.1016/j.jnoncrysol.2009.01.010.
[37] M. SelvaSelvaraj et al., Synthesis and characterization of Mn–MCM-41 and Zr–Mn-MCM-41, Microporous and mesoporous materials 78 (2005) 139–149. https://doi.org/10.1016/j. micromeso.2004.10.004.
[38] P. Worathanakul, D. Trisuwan, A. Phatruk, P. Kongkachuichay, Effect of sol–gel synthesis parameters and Cu loading on the physicochemical properties of a new SUZ-4 zeolite, Colloids and Surfaces A: Physicochemical and Engineering Aspects 377 (2011) 187–194. https://doi.org/10.1016/j.colsurfa.2010.12.034.