Nguyen Van Sang, Nguyen Thi Thu Huyen, Le Tuan Anh

Main Article Content

Abstract

Human adenovirus (HAdVs) are responsible for about 65-90% of viral conjunctivitis. Understandings of HAdVs bring promises in prevention, treatments, and biological preparations. However, thorough researches on structural proteins of HAdVs are still limited in Vietnam. In this study, we have sequenced the entire coding gene of protein hexon from HAdV-3 causing conjunctivitis in Vietnam and compared with the reference sequence in NCBI database. We detected 42 DNA variants, of which, 11 resulted in amino acid substitutions. Simulation of HAdV-3 hexon structure showed that all 11 substitutions located in crucial positions. This result revealed high risks from hexon gene variants of HAdV-3 enhancing its life span, virulence, and ability to avoid the host immune system.

Keywords: Conjunctivitis, HAdV-3, Hexon structure

References

[1] D. Seto, J. Chodosh, J. R. Brister, M. S. Jones, C. Members of the Adenovirus Research, Using the whole-genome sequence to characterize and name human adenoviruses, Journal of virology. 85 (2011) 5701-5702. https://doi.org/10.1128/JVI.00354-11.
[2] D. Seto, J. R. Brister, J. Chodosh, D. T. Curiel, A. Heim, M. S. Jones, A. Kajon, T. Lion, Q. Zhang, Human-Adenovirus-Working-Group. http://hadvwg.gmu.edu/. July, 2019.
[3] W. Chiu, R. M. Burnett, R. L. Garcea, Structural biology of viruses, Oxford University Press, New York, 1997. https://books.google.com.vn/books?id=KUgQAQAAMAAJ.
[4] L. K. Crawford-Miksza, D. P. Schnurr, Adenovirus Serotype Evolution Is Driven by Illegitimate Recombination in the Hypervariable Regions of the Hexon Protein, Virology. 224 (1996) 357-367. https://doi.org/10.1006/viro.1996.0543.
[5] J. G. D. Gall, R. G. Crystal, E. Falck-Pedersen, Construction and Characterization of Hexon-Chimeric Adenoviruses: Specification of Adenovirus Serotype, Journal of Virology. 72 (1998) 10260. https://doi.org/10.1128/JVI.72.12.10260-10264.1998.
[6] C. Deal, A. Pekosz, G. Ketner, Prospects for oral replicating adenovirus-vectored vaccines, Vaccine. 31 (2013) 3236-3243. https://doi.org/10.1016/j.Vaccine.2013.05.016.
[7] S. Pesonen, L. Kangasniemi, A. Hemminki, Oncolytic Adenoviruses for the Treatment of Human Cancer: Focus on Translational and Clinical Data, Molecular Pharmaceutics. 8 (2011) 12-28. https://doi.org/10.1021/mp100219n.
[8] M. Schmid, P. Ernst, A. Honegger, M. Suomalainen, M. Zimmermann, L. Braun, S. Stauffer, C. Thom, B. Dreier, M. Eibauer, A. Kipar, V. Vogel, U. F. Greber, O. Medalia, A. Plückthun, Adenoviral vector with shield and adapter increases tumor specificity and escapes liver and immune control, Nature Communications. 9 (2018) 450. https://doi.org/10.1038/s41467-017-02707-6.
[9] N. V. Ha, N. T. T. Huyen, D. T. T. Huyen, N. Q. Hung, T. T. Anh, H. A. Tuan, N. V. Sang, Method Development for Detection and Classification of Conjunctivitis-Causing Adenoviruses in Human, VNU Journal of Science: Natural Sciences and Technology. 32 (2016)
[10] T. A. Hall, BioEdit : a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser. 41 (1999) 95-98.
[11] J. D. Thompson, D. G. Higgins, T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research. 22 (1994) 4673-4680. https://doi.org/10.1093/nar/22.22.4673.
[12] A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny, F. T. Heer, T. A. P. de Beer, C. Rempfer, L. Bordoli, R. Lepore, T. Schwede, SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Research. 46 (2018) W296-W303. https://doi.org/10.1093/nar/gky427.
[13] W. L. DeLano, The PyMOL Molecular Graphics System, Educationnal Version Schrödinger, LLC, (2002)
[14] L. Crawford-Miksza, D. P. Schnurr, Analysis of 15 adenovirus hexon proteins reveals the location and structure of seven hypervariable regions containing serotype-specific residues, Journal of Virology. 70 (1996) 1836-1844. https://doi.org/10.1128/JVI.70.3.1836-1844.1996.
[15] J. Rux, R. Burnett, Type-Specific Epitope Locations Revealed by X-Ray Crystallographic Study of Adenovirus Type 5 Hexon, Molecular therapy : the journal of the American Society of Gene Therapy. 1 (2000) 18-30. https://doi.org/10.1006/mthe.1999.0001.
[16] S. L. Pichla-Gollon, M. Drinker, X. Zhou, F. Xue, J. J. Rux, G.-P. Gao, J. M. Wilson, H. C. J. Ertl, R. M. Burnett, J. M. Bergelson, Structure-based identification of a major neutralizing site in an adenovirus hexon, Journal of virology. 81 (2007) 1680-1689. https://doi.org/10.1128/JVI.02023-06.
[17] X. Yu, D. Veesler, M. G. Campbell, M. E. Barry, F. J. Asturias, M. A. Barry, V. S. Reddy, Cryo-EM structure of human adenovirus D26 reveals the conservation of structural organization among human adenoviruses, Science Advances. 3 (2017) https://doi.org/10.1126/sciadv.1602670.
[18] S. Roy, P. S. Shirley, A. McClelland, M. Kaleko, Circumvention of immunity to the adenovirus major coat protein hexon, Journal of Virology. 72 (1998) 6875-6879. https://doi.org/10.1128/JVI.72.8.6875-6879.1998.
[19] C. Wohlfart, Neutralization of adenoviruses: kinetics, stoichiometry, and mechanisms, Journal of Virology. 62 (1988) 2321-2328.
[20] H. Liu, L. Jin, S. B. S. Koh, I. Atanasov, S. Schein, L. Wu, Z. H. Zhou, Atomic structure of human adenovirus by cryo-EM reveals interactions among protein networks, Science (New York, N.Y.). 329 (2010) 1038-1043. https://doi.org/10.1126/science.1187433.
[21] C. M. Wiethoff, H. Wodrich, L. Gerace, G. R. Nemerow, Adenovirus protein VI mediates membrane disruption following capsid disassembly, Journal of Virology. 79 (2005) 1992-2000. https://doi.org/10.1128/JVI.79.4.19
92-2000.2005.
[22] J. J. Rux, P. R. Kuser, R. M. Burnett, Structural and Phylogenetic Analysis of Adenovirus Hexons by Use of High-Resolution X-Ray Crystallographic, Molecular Modeling, and Sequence-Based Methods, Journal of Virology. 77 (2003) 9553. https://doi.org/10.1128/JVI.77.17.9553-9566.2003.