Han Duy Linh, Cao Phuong Anh, Cao Viet, Le Thi Hong Phong, Nguyen Xuan Hoan

Main Article Content

Abstract

In this study, magnetite nanoparticles (IONPs), hydroxyapatite (HAp), hybrid composite of magnetite/hydroxyapatite (IONPs-HAp) were prepared by the hydrothermal method. The prepared materials were characterized via Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM/EDX), and Zeta phoremeter. The obtained results show that the Fe3O4 have a cubic crystal structure and have a nanoparticle's size (< 100 nm), the nano Fe3O4 were well dispersed with the hydroxyapatite to form the composite IONPs-HAp materials. The adsorption capacity of these materials for 2,4-D (2,4-dichlorophenoxyacetic acid) and Chrysoidine crystal removal were also investigated in the same condition. The prepared IONPs-HAp composite materials have the ability to adsorb selectivity with 2,4-D and Chrysoidine. There results show the potential application of hybrid composite magnetite/hydroxyapatite in the field of environmental treatment.

Keywords: Composite, oxit sắt từ, hydroxyapatite, 2,4-D, Chrysoidine.

References

[1] L. Balaita, J.F. Chailan, X.H. Nguyen, S. Bacaita, M. Popa, Hybrid chitosan-gelatine magnetic polymer particles for drug release, J. Optoelectron. Adv. Mater. 16(11-12) (2014) 1463-1471.
[2] S.F. Hasany, A. Rehman, R. Jose, I. Ahmed, Iron oxide magnetic nanoparticles: A short review, AIP Conf. Proc. 1502(1) (2012) 298-321. https://doi.org/10.1063/1.4769153.
[3] S. Bishnoi, A. Kumar, R. Selvaraj, Facile synthesis of magnetic iron oxide nanoparticles using inedible Cynometra ramiflora fruit extract waste and their photocatalytic degradation of methylene blue dye, Mater. Res. Bull. 97 (2018) 121-127. https://doi.org/10.1016/j.materresbull.2017.08.040.
[4] D. Morillo, G. Pérez, M. Valiente, Efficient arsenic(V) and arsenic(III) removal from acidic solutions with Novel Forager Sponge-loaded superparamagnetic iron oxide nanoparticles, J. Colloid. Interface. Sci. 453 (2015) 132-141. https://doi.org/10.1016/j.jcis.2015.04.048.
[5] N.B. Ngoc, H.T.D. Quy, N.T.N. Uyen, Prepara-
tion of magnetic nanocomposite materials based on chitosan/Fe3O4, Science and Technology Development Journal 20(4) (2017) 157-162 (in Vietnamese).
[6] N. Oubagha, W. Lemlikchi, P. Sharrock, M. Fiallo, M. O. Mecherri, Hydroxyapatite precipitation with hydron blue dye, J. Environ. Manage. 203(1) (2017) 807-810. https://doi.org/10.1016/j.jenvman.2016.09.039.
[7] D.C. Manatunga, R.M. Silva, K.M.N. Silva, N. Silva, S. Bhandari, Y.K.Yap, N.P. Costha, pH responsive controlled release of anti-cancer hydrophobic drugs from sodium alginate and hydroxyapatite bi-coated iron oxide nanoparticles, Eur. J. Pharm. Biopharm. 117 (2017) 29-38. https://doi.org/10.1016/j.ejpb.2017.03.014.
[8] K. Lin, J. Pan, Y. Chen, R. Cheng, X. Xu, Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders, J. Hazard. Mater. 161(1) (2009) 231-240. https://doi.org/10.1016/j.jhazmat.2008.03.076.
[9] H. Yang, S. Masse, H. Zhang, C. Hélary, L. Li, T. Coradin, Surface reactivity of hydroxyapatite nanocoatings deposited on iron oxide magnetic spheres toward toxic metals, J. Colloid. Interface. Sci. 417 (2014) 1-8. https://doi.org/10.1016/j.jcis.2013.11.031.
[10] Y. Wang, L. Hu, G. Zhang, T. Yan, L. Yan, Q. Wei, B. Du, Removal of Pb(II) and methylene blue from aqueous solution by magnetic hydroxyapatite-immobilized oxidized multi-walled carbon nanotubes, J. Colloid. Interface. Sci. 494 (2017) 380-388. https://doi.org/10.1016/j.jcis.2017.01.105.
[11] T.A. Truc, N.X. Hoan, D.T. Bach, T.T. Thuy, K. Ramadass, C.I. Sathish, N.T. Chinh, N.D. Trinh, T. Hoang, Hydrothermal synthesis of cobalt doped magnetite nanoparticles for corrosion protection of epoxy coated reinforced steel, ‎J. Nanosci. Nanotechnol. 20(6) (2020) 3519-3526. https://doi.org/10.1166/jnn.2020.17413.
[12] T.Q. Tran, D. Pham Minh, T.S. Phan, Q.N. Pham, H. Nguyen Xuan, Dry reforming of methane over calcium-deficient hydroxyapatite supported cobalt and nickel catalysts, Chem. Eng. Sci. 228(31) (2020) 115975. https://doi.org/10.1016/j.ces.2020.115975.
[13] A.L. Andrade, D.M. Souza, M.C. Pereira, J.D. Fabris, R.Z. Domingues, Synthesis and characterization of magnetic nanoparticles coated with silica through a sol-gel approach, Cerâmica. 55 (2009) 420-424. https://doi.org/10.1590/S0366-69132009000400013.
[14] Y. Guesmi, H. Agougui, R. Lafi, M. Jabli, A. Hafiane, Synthesis of hydroxyapatite-sodium alginate via a co-precipitation technique for efficient adsorption of methylene blue dye, J. Mol. Liq. 249 (2018) 912-920. https://doi.org/10.1016/j.molliq.2017.11.113.
[15] W. Wu, Z. Wu, T. Yu, C. Jiang, W.S. Kim, Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications, Sci. Technol. Adv. Mater. 16(2) (2015) 23501. https://doi.org/10.1088/1468-6996/16/2/023501.
[16] S. Manisha, M. Amit, M. Akansha, C. Diptiman, B. Soumen, Effect of surfactants on the structure and adsorption efficiency of hydroxyapatite nanorods, ‎J. Nanosci. Nanotechnol. 18(1) (2018) 623-633. https://doi.org/10.1166/jnn.2018.13948.