Preparation of the Magnetic Composite Materials Fe3O4/ Hydroxyapatite and Its Application for Removal of 2,4-D and Chrysoidine Crystal
Main Article Content
Abstract
In this study, magnetite nanoparticles (IONPs), hydroxyapatite (HAp), hybrid composite of magnetite/hydroxyapatite (IONPs-HAp) were prepared by the hydrothermal method. The prepared materials were characterized via Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM/EDX), and Zeta phoremeter. The obtained results show that the Fe3O4 have a cubic crystal structure and have a nanoparticle's size (< 100 nm), the nano Fe3O4 were well dispersed with the hydroxyapatite to form the composite IONPs-HAp materials. The adsorption capacity of these materials for 2,4-D (2,4-dichlorophenoxyacetic acid) and Chrysoidine crystal removal were also investigated in the same condition. The prepared IONPs-HAp composite materials have the ability to adsorb selectivity with 2,4-D and Chrysoidine. There results show the potential application of hybrid composite magnetite/hydroxyapatite in the field of environmental treatment.
References
[2] S.F. Hasany, A. Rehman, R. Jose, I. Ahmed, Iron oxide magnetic nanoparticles: A short review, AIP Conf. Proc. 1502(1) (2012) 298-321. https://doi.org/10.1063/1.4769153.
[3] S. Bishnoi, A. Kumar, R. Selvaraj, Facile synthesis of magnetic iron oxide nanoparticles using inedible Cynometra ramiflora fruit extract waste and their photocatalytic degradation of methylene blue dye, Mater. Res. Bull. 97 (2018) 121-127. https://doi.org/10.1016/j.materresbull.2017.08.040.
[4] D. Morillo, G. Pérez, M. Valiente, Efficient arsenic(V) and arsenic(III) removal from acidic solutions with Novel Forager Sponge-loaded superparamagnetic iron oxide nanoparticles, J. Colloid. Interface. Sci. 453 (2015) 132-141. https://doi.org/10.1016/j.jcis.2015.04.048.
[5] N.B. Ngoc, H.T.D. Quy, N.T.N. Uyen, Prepara-
tion of magnetic nanocomposite materials based on chitosan/Fe3O4, Science and Technology Development Journal 20(4) (2017) 157-162 (in Vietnamese).
[6] N. Oubagha, W. Lemlikchi, P. Sharrock, M. Fiallo, M. O. Mecherri, Hydroxyapatite precipitation with hydron blue dye, J. Environ. Manage. 203(1) (2017) 807-810. https://doi.org/10.1016/j.jenvman.2016.09.039.
[7] D.C. Manatunga, R.M. Silva, K.M.N. Silva, N. Silva, S. Bhandari, Y.K.Yap, N.P. Costha, pH responsive controlled release of anti-cancer hydrophobic drugs from sodium alginate and hydroxyapatite bi-coated iron oxide nanoparticles, Eur. J. Pharm. Biopharm. 117 (2017) 29-38. https://doi.org/10.1016/j.ejpb.2017.03.014.
[8] K. Lin, J. Pan, Y. Chen, R. Cheng, X. Xu, Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders, J. Hazard. Mater. 161(1) (2009) 231-240. https://doi.org/10.1016/j.jhazmat.2008.03.076.
[9] H. Yang, S. Masse, H. Zhang, C. Hélary, L. Li, T. Coradin, Surface reactivity of hydroxyapatite nanocoatings deposited on iron oxide magnetic spheres toward toxic metals, J. Colloid. Interface. Sci. 417 (2014) 1-8. https://doi.org/10.1016/j.jcis.2013.11.031.
[10] Y. Wang, L. Hu, G. Zhang, T. Yan, L. Yan, Q. Wei, B. Du, Removal of Pb(II) and methylene blue from aqueous solution by magnetic hydroxyapatite-immobilized oxidized multi-walled carbon nanotubes, J. Colloid. Interface. Sci. 494 (2017) 380-388. https://doi.org/10.1016/j.jcis.2017.01.105.
[11] T.A. Truc, N.X. Hoan, D.T. Bach, T.T. Thuy, K. Ramadass, C.I. Sathish, N.T. Chinh, N.D. Trinh, T. Hoang, Hydrothermal synthesis of cobalt doped magnetite nanoparticles for corrosion protection of epoxy coated reinforced steel, J. Nanosci. Nanotechnol. 20(6) (2020) 3519-3526. https://doi.org/10.1166/jnn.2020.17413.
[12] T.Q. Tran, D. Pham Minh, T.S. Phan, Q.N. Pham, H. Nguyen Xuan, Dry reforming of methane over calcium-deficient hydroxyapatite supported cobalt and nickel catalysts, Chem. Eng. Sci. 228(31) (2020) 115975. https://doi.org/10.1016/j.ces.2020.115975.
[13] A.L. Andrade, D.M. Souza, M.C. Pereira, J.D. Fabris, R.Z. Domingues, Synthesis and characterization of magnetic nanoparticles coated with silica through a sol-gel approach, Cerâmica. 55 (2009) 420-424. https://doi.org/10.1590/S0366-69132009000400013.
[14] Y. Guesmi, H. Agougui, R. Lafi, M. Jabli, A. Hafiane, Synthesis of hydroxyapatite-sodium alginate via a co-precipitation technique for efficient adsorption of methylene blue dye, J. Mol. Liq. 249 (2018) 912-920. https://doi.org/10.1016/j.molliq.2017.11.113.
[15] W. Wu, Z. Wu, T. Yu, C. Jiang, W.S. Kim, Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications, Sci. Technol. Adv. Mater. 16(2) (2015) 23501. https://doi.org/10.1088/1468-6996/16/2/023501.
[16] S. Manisha, M. Amit, M. Akansha, C. Diptiman, B. Soumen, Effect of surfactants on the structure and adsorption efficiency of hydroxyapatite nanorods, J. Nanosci. Nanotechnol. 18(1) (2018) 623-633. https://doi.org/10.1166/jnn.2018.13948.