Do Quang Trung, Nguyen Thi Thu Hang, Dinh Mai Van, Pham Bich Bích ngoc, Tran Thi Hang, Luu The Anh, Phi Quyet Tien

Main Article Content

Abstract

Endophytic bacteria reside in the intercellular spaces in different plant tissues without causing damage. This study aimed to select endophytic bacterial strains from Man Trau grass (Eleusine indica) that are able to inbibit the fungus A. alternata  causing stem rot disease on pitaya. The result showed that one fungal isolate was pathogenic and caused stem rot disease on dragonfruit. The analysis results based on morphological characteristics and ITS region sequence indicated that the isolated fungal strain is 100% identical to A. alternata. In addition, a total of 16 endophytic bacterial strains were isolated from Man Trau grass samples in Binh Thuan and screened for antifungal activity. Ten bacterial strains with antagonistic activity against A. alternata causing stem rot disease on pitaya were detected. Among those, strain MT47 showed the strongest antifungal activity with an efficiency of 36.67%. Moreover, the result also presented that the antagonistic strain MT47 pocesses the ability of biofilm formation significantly higher than the control. The results suggest that these endophytic bacteria can be used in biocontrol of the stem rot disease on pitaya.

Keywords: Stem rot disease, Hylocereus undatus, Eleusine indica, Alternaria alternata, biofilm.

References

[1] N. Tel zur, R&D of pitahayas - Dragonfruit - Vine Cacti: Limitations and Challenges and the Current Global Market, Acta Hortic, Vol. 1067, 2015, pp. 365-370.
[2] N. H. Son, N. T. Hieu, N. T. B. Ngoc, T. M. Tien, M. T. T. Kieu, N. T. T. Vinh, Research on some urgent measures to limit the spread and harms of dragon fruit stem rot disease caused by Neoscytalidium dimidiatum fungus, Science and Technology Journal of Agriculture and Rural Development, Vol. 9, ,2015, pp. 27-32.
[3] N. K. Ngoc, N. V. Nguyen, P. T. M. An, A. Woolf, R. Fullerton, Effect of storage temperatures on postharvest diseases of dragon fruit (Hylocereus undatus Haw.) in the Mekong Delta Region, Vietnam, Acta Horticulturae, 2018, pp. 453-460.
[4] P. A. Backman, R. A. Sikora, Endophytes: An Emerging Tool for Biological Control, Biol. Control, Vol. 46, 2008, pp. 1–3. https://doi.org/10.1016/j.biocontrol.2008.03.009.
[5] D. Dutta, K. C. Puzari, R. Gogoi, P. Dutta, Endophytes: Exploitation as a Tool in Plant Protection, Braz. Arch. Biol. Technol., Vol. 57, 2014, pp. 621–629.
https://doi.org/10.1590/S1516-8913201402043.
[6] S. Larran, M. R. Simon, M. V. Moreno, S. M. P. Santamarina, A. Perello, Endophytes from Wheat as Biocontrol Agents Against Tan Spot Disease, Biol. Control, Vol. 92, 2015, pp. 17–23. https://doi.org/10.1016/j.biocontrol.2015.09.002.
[7] C. E. Hong, J. M. Park, Endophytic Bacteria as Biocontrol Agents against Plant Pathogens: Current State-Of-The-Art, Plant Biotechnol. Rep., Vol. 10, 2016, pp. 353–357.
https://doi.org/10.1007/s11816-016-0423-6.
[8] S. Compant, G. Brader, S. Muzammil, A. Sessitsch, A. Lebrihi, F. Mathieu, Use Of Beneficial Bacteria and Their Secondary Metabolites to Control Grapevine Pathogen Diseases, BioControl, Vol. 58, 2013, pp. 435–455. https://doi.org/10.1007/s10526-012-9479-6.
[9] S. Compant, B. Duffy, J. Nowak, C. Clement, E.A. Barka, Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects, Appl. Environ. Microbiol., Vol. 71, 2005, pp. 4951–4959.
http://doi.org/10.1128/AEM.71.9.4951-4959.2005
[10] A. Kumar, E. Radhakrishnan, S. Droby, V. Singh, S. Singh, J. White, Entry, Colonization and Distribution of Endophytic Microorganisms in Plants, Microbial Endophytes: Functional Biology and Applications, Elsevier, 2019.
[11] M. Meena, P. Swapnil, R. S. Upadhyay, Isolation, Characterization and Toxicological Potential of Alternaria-mycotoxins (TeA, AOH and AME) in Different Alternaria Species from Various Regions of India, Sci. Rep. Vol. 7, 2017, pp. 8777. https://doi.org/10.1038/s41598-017-09138-9.
[12] G. B. Lan, Z. F. He, P. G. Xi, Z. D. Jiang, C. Mainland, First Report of Brown Spot Disease Caused by Neoscytalidium dimidiatum on Hylocereus undatus in Guangdong, Plant Diseasse, Vol. 96, 2012, pp. 1702. http://doi.org/ 10.1094/PDIS-07-12-0632-PDN.
[13] T. M. Tuong, T. N. Hung, Research of Prevention and Treatment of Some Fungal Pathogens in Dragon Fruit by Using Trichoderma, Journal of Thu Dau Mot University, Vol. 4, 2012, pp. 10-15.
[14] J. L. Balcázar, I. De Blas, I. Ruiz-Zarzuela, D. Cunningham, D. Vendrell, J. L. Múzquiz, The Role of Probiotics in Aquaculture, Veterinary microbiology, Vol. 114, 2006, pp. 173-186. https://doi.org/10.1016/j.vetmic.2006.01.009.
[15] H. A. Hong, J. M. Huang, R. Khaneja, L. V. Hiep, M. C. Urdaci and S. M. Cutting, The Safety of Bacillus subtilis and Bacillus indicus as Food Probiotics, J. Appl. Microbiol, Vol. 105, 2008, pp. 510-520. http://doi.org/ 10.1111/j.1365-2672.2008.03773.x
[16] S. McEldowney, M. Fletcher, Variability of the Influence of Physicochemical Factors Affecting Bacterial Adhesion to Polystyrene Substrata, Appl. Environ. Microbiol., Vol. 52, 1986, pp. 460-465. http://doi.org/ 10.1128/AEM.52.3.460-465.1986.
[17] C. Chaintreuil, E. Giraud, Y. Prin, J. Lorqin, B. A. A. Amadou, M. Gillis, P. De Lajudie and B. Dreyfus, Photosynthetic Bradyrhizobia are Natural Endophytes of the African Wild Rice Oryza breviligulata, Appl. Environ. Microbiol. Vol. 66, 2000, pp. 5437–5447. http://doi.org/ 10.1128/AEM.66.12.5437-5447.2000.
[18] D. K. Zinniel, P. Lambrecht, N. B. Harris, Z. Feng, D. Kuczmarski, P. Higley, C. A. Ishimaru, A. Arunakumari, R. G. Barletta, A. K. Vidaver, Isolation and Characterization of Endophytic Colonizing Bacteria from Agronomic Crops and Prairie Plants, Appl. Environ. Microbiol. Vol. 68, 2002, pp. 2198–2208.
http://doi.org/10.1128/AEM.68.5.2198-2208.2002.
[19] G. Strobel, B. Daisy, U. Castillo and J. Harper, Natural Products from Endophytic Microrganisms, J. Nat. Prod. Vol. 67, 2004, pp. 257–268. https://doi.org/10.1021/np030397v.
[20] W. Haggag, S. Timmusk, Colonization of Peanut Roots by BioFilm-forming Paenibacillus Polymyxa Iinitiates Biocontrol Against Crown Rot Disease, J. Appl. Microbiol., Vol. 104, 2008, pp. 961–969. https://doi.org/10.1111/j.1365-2672.2007.03611.x
[21] G. Seneviratne, R. Thilakaratne, A. Jayasekara, K. Seneviratne, K. Padmathilake, M. De Silva, Developing Beneficial Microbial Biofilms on Roots of Non Legumes: a Novel Biofertilizing Technique, In: Microbial Strategies for Crop Improvement, Springer, 2009, pp. 51–62. http://doi.org/ 10.1007/978-3-642-01979-1_3.
[22] S. Timmusk, N. Grantcharova, E. G. H. Wagner, Paenibacillus Polymyxa Invades Plant Roots and
[23] Forms Biofilms, Appl. Environ. Microbiol. Vol. 71, 2005, pp. 7292–7300. http://doi.org/ 10.1128/AEM.71.11.7292-7300.2005.
[24] M. Ongena, P. Jacques, Bacillus Lipopeptides: Versatile Weapons for Plant Disease Biocontrol, Trends Microbiol. Vol. 16, 2008, pp. 115–125. http://doi.org/ 10.1016/j.tim.2007.12.009.
[25] A. K. Dunn, A. K. Klimowicz, J. Handelsman, Use of a Promoter Trap to Identify Bacillus Cereus Genes Regulated by Tomato Seed Exudate and a Rhizosphere Resident, Pseudomonas Aureofaciens, Appl. Environ. Microbiol. 69 (2003) 1197–1205. http://doi.org/ 10.1128/AEM.69.2.1197-1205.2003.
[26] L. Eberl, S. B. Von Bodman, C. Fuqua, The Biofilm Mode of Life: Mechanisms and Adaptation, Horizon Bioscience, Norfolk, 2007, pp. 214–233.