Pham Thanh Luan, Le Thi Sang, Vu Duc Minh, Ngo Thi To Nhu, Do Duc Thanh, Lai Manh Giau, Nguyen Xuan Tuyen

Main Article Content

Abstract

This paper presents a comparative study of effectiveness of edge detection methods such as total horizontal gradient, analytic signal amplitude, tilt angle, gradient amplitude of tilt angle, theta map, horizontal tilt angle, tilt angle of total horizontal gradient, tilt angle of analytic signal, improved theta map, and total horizontal gradient of improved tilt angle. The effectiveness of each method was estimated on synthetic magnetic data and synthetic gravity anomaly data with and without noise. The obtained results show that the tilt angle of gradient amplitude can detect all the edges more clearly and precisely. The applicability of each method is demonstrated on the aeromagnetic anomaly data from the Zhurihe region of Northeast China, and Bouguer gravity anomaly data from a region of North Vietnam. The results computed by the tilt angle of horizontal gradient were also in accord with the geologic structures of the areas.

Keywords: Edge detection, magnetic anomaly, gravity anomaly, Zhurihe, North Vietnam.

References

[1] S.K. Hsu, D. Coppense, C.T. Shyu, High- resolution detection of geologic boundaries from potential field anomalies: An enhanced analytic signal technique, Geophysics 61(1996) 1947–1957. https://doi.org/10.1190/1.1443966.
[2] M. Fedi, G. Florio, Detection of potential fields source boundaries by enhanced horizontal derivative method, Geophysical Prospecting 49(2001) 40–58. https://doi.org/10.1046/j.1365-2478.2001.00235.x.
[3] F.J.F. Ferreira, J. de Souza, A.B.E.S de Bongiolo, L.G. de Castro, Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle, Geophysics 78(2013) J33–J41. https://doi.org/10.1190/geo2011-0441.1.
[4] A.M. Eldosouky, L.T. Pham, H. Mohammed, B. Pradhan, A comparative study of THG, AS, TA, Theta, TDX and LTHG techniques for improving source boundaries detection of magnetic data using synthetic models: a case study from G. Um Monqul, North Eastern Desert, Egypt, Journal of African Earth Sciences 170(2020) 103940. https://doi.org/10.1016/j.jafrearsci.2020.103940.
[5] E. Oksum, M.N. Dolmaz, L.T. Pham, Inverting gravity anomalies over the Burdur sedimentary basin, SW Turkey, Acta Geodaetica et Geophysica 54(2019) 445–460. https://doi.org/10.1007/s40328 -019-00273-5.
[6] A.M. Eldosouky, Aeromagnetic data for mapping geologic contacts at Samr El-Qaa area, North Eastern Desert, Egypt, Arab J Geosci. 12(2019) 2. https://doi.org/10.1007/s12517-018-4182-2.
[7] L.T. Pham, A comparative study on different filters for enhancing potential field source boundaries: synthetic examples and a case study from the Song Hong Trough (Vietnam), Arabian Journal of Geosciences 13(2020) 723. https://doi. org/10.1007/s12517-020-05737-5.
[8] L.T. Pham, M. Le-Huy, E. Oksum, T.D. Do, Determination of maximum tilt angle from analytic signal amplitude of magnetic data by the curvature-based method, Vietnam Journal of Earth Sciences 40(2018) 354-366. https://doi.org/10. 15625/0866-7187/40/4/13106.
[9] L.T. Pham, E. Oksum, T.D. Do, M.D. Vu, Comparison of different approaches of computing the tilt angle of the total horizontal gradient and tilt angle of the analytic signal amplitude for detecting source edges, Bulletin of the Mineral Research and Exploration 16(2020). https://doi.org/10. 19111/bulletinofmre.746858.
[10] H.M. Evjen, The place of the vertical gradient in gravitational interpretations, Geophysics 1(1936) 127–136. https://doi.org/10.1190/1.1437067.
[11] L. Cordell, V.J.S. Grauch, Mapping basement magnetization zones from aeromagnetic data in the San Juan basin, New Mexico. In: Hinze WJ (ed) The utility of regional gravity and magnetic anomaly maps. Society of Exploration Geophysics, Tulsa, (1985) 181–197. https://doi. org/10.1190/1.0931830346.
[12] W.R.J Roest, J. Verhoef, M. Pilkington, Magnetic interpretation using the 3-D analytic signal, Geophysics 57(1992) 116–125. https://doi.org/ 10.1190/1.1443174.
[13] B. Verduzco, J.D. Fairhead, C.M. Green, C. MacKenzie, New insights into magnetic derivatives for structural mapping, The Leading Edge 23(2004) 116–119. https://doi.org/10.1190/ 1.1651454.
[14] F. Cella, M. Fedi, G. Florio, Toward a full multiscale approach to interpret potential fields, Geophys. Prospect. 57 (2009) 543-557. https:// doi.org/10.1111/j.1365-2478.2009.00808.x.
[15] M. Beiki, Analytic signals of gravity gradient tensor and their application to estimate source location, Geophysics 75 (2010) 159–174. https:// doi.org/10.1190/1.3493639.
[16] H.G. Miller, V. Singh, Potential field tilt a new concept for location of potential field sources, Journal of Applied Geophysics 32(1994) 213–217. https://doi.org/10.1016/0926-9851(94) 90022-1.
[17] C. Wijns, C. Perez, P. Kowalczyk, Theta map: Edge detection in magnetic data, Geophysics 70(2005) 39-43. https://doi.org/10.1190/1.1988184.
[18] G.R.J. Cooper, D.R. Cowan, Enhancing potential field data using filters based on the local phase, Computers & Geosciences 32(2006) 1585–1591. https://doi.org/10.1016/j.cageo.2006.02.016.
[19] Y. Yuan, Q. Yu, Edge detection in potential-field gradient tensor data by use of improved horizontal analytical signal methods, Pure and Applied Geophysics 172(2014) 461–472. https://doi.org/ 10.1007/s00024-014-0880-1.
[20] G.R.J. Cooper, Reducing the dependence of the analytic signal amplitude of aeromagnetic data on the source vector direction, Geophysics 79(2014) J55–J60. https://doi.org/10.1190/geo2013-0319.1.
[21] A.G. Chen, T.F. Zhou, D.J. Liu, S. Zhang, Application of an enhanced theta-based filter for potential field edge detection: a case study of the Luzong ore district, Chin. J. Geophys. 60(2017) 203–218. https://doi.org/10.1002/cjg2.30039.
[22] Y. Nasuti, A. Nasuti, D. Moghadas, STDR: A novel approach for enhancing and edge detection of potential field data, Pure and Applied Geophysics 176(2018) 827–841. https://doi.org/ 10.1007/s00024-018-2016-5.
[23] L.T. Pham, E. Oksum, T.D. Do, M. Le-Huy, New method for edges detection of magnetic sources using logistic function, Geofizichesky Zhurnal 40(2018) 127–135. https://doi.org/10.24028/ gzh.0203-3100.v40i6.2018.151033.
[24] L.T. Pham, T.D. Do, E. Oksum, A new method for edge detection in interpretation of potential field data, Journal of Engineering Sciences and Design 6(2018) 637-642. https://doi.org/10.21923/jesd. 441090.
[25] L.T. Pham, E. Oksum, T.D. Do, Edge enhancement of potential field data using the logistic function and the total horizontal gradient, Acta Geodaetica et Geophysica 54(2019) 143–155. https://doi.org/10.1007/s40328-019-00248-6.
[26] L.T. Pham, E. Oksum, T.D. Do, M. Le-Huy, M.D. Vu, V.D. Nguyen, LAS: A combination of the analytic signal amplitude and the generalised logistic function as a novel edge enhancement of magnetic data, Contributions to Geophysics and Geodesy 49(2019) 425–440. https://doi.org/10. 2478/congeo-2019-0022.
[27] L.T. Pham, T.V. Vu, S. Le-Thi, P.T. Trinh, Enhancement of potential field source boundaries using an improved logistic filter, Pure Appl. Geophys. (2020) https://doi.org/10.1007/ s00024-020-02542-9.
[28] L.T. Pham, A.M. Eldosouky, E. Oksum, S.A. Saada, A new high resolution filter for source edge detection of potential data, Geocarto International. (2020) doi.org/10.1080/10106049.2020.1849414.
[29] G. Ma, C. Liu, L. Li, Balanced horizontal derivative of potential field data to recognize the edges and estimate location parameters of the source, Journal of Applied Geophysics 108(2014) 12-18. https://doi.org/10.1016/j.jappgeo.2014.06. 005.
[30] P.T. Hieu, F. Chen, L.T. Me, N.T.B. Thuy, W. Siebel, T.G. Lan, Zircon U–Pb ages and Hf isotopic compositions from the Sin Quyen Formation: the Precambrian crustal evolution of northwest Vietnam, Int Geol Rev 54(2012) 1548–1561.https://doi.org/10.1080/00206814.2011.646831.
[31] T.T. Hoa, A.E. Izokh, G.V. Polyakov, A.S. Borisenko, T.T. Anh, P.A. Balykin, N.T. Phuong, S.N. Rudnev, V.V. Van, B.A. Nien, Permo-Triassic magmatism and metallogeny of Northern Vietnam in relation to the Emeishan plume, Russ Geol Geophys 49(2008) 480–491. https://doi.org/ 10.1016/j.rgg.2008.06.005.