Le Thi Thanh Nhan, Nguyen Thuy Quynh, Le Lan Phuong, Bui Phuong Thao, Nguyen Thi Tu Linh, Le Trung Tho, Trinh Hong Thai

Main Article Content

Abstract

For the prevalence of lung cancer and its poor diagnosis, the seeking of the efficient biomarkers for this disease is an urgent requirement, especially from non-invasive samples such as plasma. The mitochondria DNA (mtDNA) copy number change has been evaluated as a potential indicator of cancer risk, however, there have been few studies regarding mtDNA in plasma derived exosomes. In this study, the mtDNA copy number was measured on 29 plasma exosome samples of patients with non-small cell lung cancer (NSCLC) and 29 plasma exosome samples of cancer-free controls by real-time PCR assay, then being statistically analyzed to evaluate the relationship between these figures and several pathological features of NSCLC patients. As the results, the existence of mtDNA in exosomes isolated from plasma was detected through PCR assay using primers covering most of the mtDNA length. The relative mtDNA copy numbers determined in the exosomes of the disease and control groups were 1619.1 ± 2589.0 and 1207.0 ± 1550.0, respectively, whereas these values in two disease stages were 783.6 ± 759.3 (stage I-II) and 2647.0 ± 3584.0 (stage III-IV). Comparing among these groups, the difference was only statistically significant between the disease groups of stage I-II and stage III-IV (p<0.05), the group of stage III-IV and the control group (p<0.05). Indeed, the mtDNA copy number is associated with tumor stage and stage N (p<0.05). On the other aspect, the smoking habit of NSCLC patients could be an underlying reason behind the alteration in mtDNA copy number in the plasma exosomes. In short, our study demonstrates that the mtDNA copy number in exosomes resourced from plasma could be a potential biomarker for the detection and prognosis of NSCLC.

Keywords: mtDNA copy number, plasma exosome, non-small cell lung cancer, real-time PCR.

References

[1] Y. Shao, Y. Shen, T. Chen, F. Xu, X. Chen, S. Zheng, The Functions and Clinical Applications of Tumor-derived Exosomes, Oncotarget,Vol. 7, No. 37, 2016, pp. 60736-60751, https://doi.org/10.18632/oncotarget.11177.
[2] B. K. Thakur, H. Zhang, A. Becker, I. Matei, Y. Huang, B. Costa-Silva, Y. Zheng, A. Hoshino, H. Brazier, J. Xiang, C. Williams, R. R. Barrueco, J. M. Silva, W. Zhang, S. Hearn, O. Elemento, N. Paknejad, K. M. Todorova, K. Welte,
J. Bromberg, H. Peinado, D. Lyden, Double-stranded DNA in Exosomes: A Novel Biomarker in Cancer Detection, Cell Res, Vol. 24, No. 6, 2014, pp. 766-769, https://doi.org/10.1038/cr.2014.44.
[3] J. V. Philley, A. Kannan, W. Qin, E. R. Sauter, M. Ikebe, K. L. Hertweck, D. A. Troyer, O. J. Semmes, S. Dasgupta, Complex-I Alteration and Enhanced Mitochondrial Fusion are Associated with Prostate Cancer Progression, J. Cell Physiol, Vol. 231, No. 6, 2016, pp. 1364-1374, https://doi.org/10.1002/jcp.25240.
[4] P. Sansone, C. Savini, I. Kurelac, Q. Chang, L. B. Amato, A. Strillacci, A. Stepanova, L. Iommarini, C. Mastroleo, L. Daly, A. Galkin, B. K. Thakur, N. Soplop, K. Uryu, A. Hoshino, L. Norton, M. Bonafé, M. Cricca, G. Gasparre, D. Lyden, J. Bromberg, Packaging and Transfer of Mitochondrial DNA Via Exosomes Regulate Escape from Dormancy in Hormonal Therapy-resistant Breast Cancer, Proc Natl Acad Sci USA, Vol. 114, No. 43, 2017, pp. E9066-E9075, https://doi.org/10.1073/pnas.1704862114.
[5] Y. Li, X. Guo, S. Guo, Y. Wang, L. Chen, Y. Liu, M. Jia, J. An, K. Tao, J. Xing, Next Generation Sequencing-based Analysis of Mitochondrial DNA Characteristics in Plasma Extracellular Vesicles of Patients with Hepatocellular Carcinoma, Oncol Lett, Vol. 20, No. 3, 2020, pp. 2820-2828, https://doi.org/10.3892/ol.2020.11831.
[6] E. Reznik, M. L. Miller, Y. Şenbabaoğlu, N. Riaz, J. Sarungbam, S. K. Tickoo, H. A. A. Ahmadie, W. Lee, V. E. Seshan, A. A. Hakimi, C. Sander, Mitochondrial DNA Copy Number Variation Across Human Cancers, ELife, Vol. 5, 2016, pp. 10769, https://doi.org/10.7554/eLife.10769.
[7] K .J. Livak, T. D. Schmittgen, Analysis of Relative Gene Expression Data using Real-time Quantitative PCR and the 2-∆∆Ct Method, Methods, Vol. 25, No. 4, 2001, pp. 402408, https://doi.org/10.1006/meth.2001.1262.
[8] MITOMAP: A Human Mitochondrial Genome Database Center for Molecular Medicine, Emory University, Atlanta, GA, USA, http://www.gen.emory.edu/mitomap.html/,v2020 (accessed on: September 20th, 2020).
[9] J. Fernandes, V. Michel, M. C. Ponce, A. Gomez, C. Maldonado, H. De Reuse, J. Torres, E. Touati, Circulating Mitochondrial DNA Level, a Noninvasive Biomarker for the Early Detection of Gastric Cancer, Cancer Epidemiol Biomarkers Prev, Vol. 23, No. 11, 2014, pp. 2430-2438, https://doi.org/10.1158/1055-9965.EPI-14-0471.
[10] L. Wang, H. Lv, P. Ji, X. Zhu, H. Yuan, G. Jin, J. Dai, Z. Hu, Y. Su, H. Ma, Mitochondrial DNA Copy Number is Associated with Risk of Head and Neck Squamous Cell Carcinoma in Chinese Population, Cancer Med, Vol. 7, No. 6, 2018, pp. 2776-2782, https://doi.org/10.1002/cam4.1452.
[11] H. D. Hosgood III, C. S. Liu, N. Rothman, S. J. Weinstein, M. R. Bonner, M. Shen, U. Lim, J. Virtamo, W. L. Cheng, D. Albanes, Q. Lan, Mitochondrial DNA Copy Number and Lung Cancer Risk in a Prospective Cohort Study, Carcinogenesis, Vol. 31, No. 5, 2010, pp. 847-849, https://doi.org/10.1093/carcin/bgq045.
[12] J. S. Keserű, B. Soltész, J. Lukács, É. Márton, M. S. Bónizs, A. Penyige, R. Póka, B. Nagy, Detection of Cell-free, Exosomal and Whole Blood Mitochondrial DNA Copy Number in Plasma or Whole Blood of Patients with Serous Epithelial Ovarian Cancer, J. Biotechnol, Vol. 298, 2019, pp. 76-81, https://doi.org/10.1016/j.jbiotec.2019.04.015.
[13] S. Meng, I. De Vivo, L. Liang, Z. Hu, D. C. Christiani, E. Giovannucci, J. Han, Pre-diagnostic Leukocyte Mitochondrial DNA Copy Number and Risk of Lung Cancer, Oncotarget, Vol. 7, No. 19, 2016, pp. 27307-27312,
https://doi.org/10.18632/oncotarget.8426.