Synthesis and Spectroscopic Characterizations of Ni(II) Thiosemicarbazone Bearing Anthracene
Main Article Content
Abstract
The X-ray structure of 9-anthraldehyde-4-methyl-3-thiosemicarbazone was firstly determined. The Ni(II) complex with this ligand was prepared upon reaction with chloride salt. Mass spectrometry result confirms correct formulation of the complex. Unusual 1H NMR signal pattern of anthracene moiety reveal cis arrangement cemented by intramolecular p–p stackings between aromatic rings. As a result of this interaction, the electronic structure of anthracene ring is perturbed and gives rise to structureless and broad absorption and emission bands.
Keywords:
Anthracene, thiosemicarbazone, nickel, spectroscopies, π–π interactions.
References
M. H. Nguyen, T. N. Nguyen, D. Q. Do, H. H. Nguyen, Q. M. Phung, N. Thirumalaivasan, S. P. Wu, T. H. Dinh, A Highly Selective Fluorescent Anthracene-Based Chemosensor for Imaging Zn2+ In Living Cells and Zebrafish, Inorg. Chem. Commun., Vol. 115, 2020, 107882. https://doi.org/10.1016/j.inoche.2020.107882.
[2] P. S. Badekar, A. A. Kumbhar, Anthracene-Based Fluorescence Turn on Chemodosimeter for The Recognition of Persulfate Anion, New J. Chem., Vol. 42, 2018, pp. 3917-3923.
https://doi.org/10.1039/C7NJ03425C.
[3] J. B. Birks, Excimers, Rep. Prog. Phys., Vol. 38, 1975, pp. 903-974. https://doi.org/10.1088/0034-4885/38/8/001.
[4] M. P. Heng, S. K. Sinniah, W. Y. Teoh, K. S. Sim, S. W. Ng, Y. K. Cheah, K. W. Tan, Synthesis Of A DNA-Targeting Nickel (II) Complex with Testosterone Thiosemicarbazone Which Exhibits Selective Cytotoxicity Towards Human Prostate Cancer Cells (Lncap), Spectrochim. Acta A, Vol. 150, 2015, pp. 360-372.
https://doi.org/10.1016/j.saa.2015.05.095.
[5] V. M. Leovac, S. B. Novaković, G. A. Bogdanović, M. D. Joksović, K. Mészáros Szécsényi, V. I. Češljević, Transition Metal Complexes with Thiosemicarbazide-based ligands. Part LVI: Nickel(II) Complex with 1,3-Diphenylpyrazole-4-carboxaldehyde Thiosemicarbazone and Unusually Deformed Coordination Geometry, Polyhedron, Vol. 26, 2007, pp. 3783-3792.
https://doi.org/10.1016/j.poly.2007.04.012.
[6] M. H. Nguyen, T. T. H. Khuat, H. H. Nguyen, T. H. Dinh, NiII, PdII Complexes with Pyrene-based Thiosemicarbazones: Syntheses, Molecular Structures, and Excimeric Emissions, Z. Anorg. Allg. Chem., Vol. 645, 2019, pp. 113-119. https://doi.org/10.1002/zaac.201800437.
[7] M. H. Nguyen, T. T. H. Khuat, D. Q. Do, H. H. Nguyen, T. H. Dinh, Anthracene-based Ni(II) Thiosemicarbazones with Novel Intramolecular π–π stackings, Inorg. Chem. Commun., Vol. 118, 2020, 107994.
https://doi.org/10.1016/j.inoche.2020.107994.
[8] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, OLEX2: a Complete Structure Solution, Refinement and Analysis Program, J. Appl. Crystallogr., Vol. 42, 2009, pp. 339-341. https://doi.org/10.1107/S0021889808042726.
[9] G. Sheldrick, SHELXT - Integrated Space Group and Crystal Structure Determination, Acta Cryst. A, Vol. 71, 2015, pp. 3-8.
https://doi.org/10.1107/S2053273314026370.
[10] F. A. Beckford, G. Leblanc, J. Thessing, M. Shaloski, B. J. Frost, L. Li, N.P. Seeram, Organometallic Ruthenium Complexes with Thiosemicarbazone Ligands: Synthesis, Structure and Cytotoxicity of [(η6-p-cymene)Ru(NS)Cl]+ (NS=9-anthraldehyde thiosemicarbazones), Inorg. Chem. Commun., Vol. 12, 2009, pp. 1094-1098. https://doi.org/10.1016/j.inoche.2009.08.034.
[11] A. N. Kate, A. A. Kumbhar, A. A. Khan, P. V. Joshi, V. G. Puranik, Monitoring Cellular Uptake and Cytotoxicity of Copper(II) Complex Using a Fluorescent Anthracene Thiosemicarbazone Ligand, Bioconjugate Chem., Vol. 25, 2014, pp. 102-114. https://doi.org/10.1021/bc400385d.
[12] M. H. Nguyen, T. T. H. Khuat, H. H. Nguyen, Q. M. Phung, T. H. Dinh, Emissive Pd(II) Thiosemicarbazones Bearing Anthracene: New Complexes with Unusual Coordination Mode, Inorg. Chem. Commun., Vol. 102, 2019, pp. 120-125. https://doi.org/10.1016/j.inoche.2019.02.028.
[13] J. Hu, M. H. Nguyen, J. H. K. Yip, Metallacyclophanes of 1,6-Bis(diphenylphosphino)pyrene: Excimeric Emission and Effect of Oxygen on Stability of the Rings, Inorg. Chem., Vol. 50, 2011, pp. 7429-7439. https://doi.org/10.1021/ic102441b.
[14] S.G. Telfer, T.M. McLean, M.R. Waterland, Exciton Coupling in Coordination Compounds, Dalton Trans., Vol. 40, 2011, pp. 3097-3108. https://doi.org/10.1039/C0DT01226B.
[2] P. S. Badekar, A. A. Kumbhar, Anthracene-Based Fluorescence Turn on Chemodosimeter for The Recognition of Persulfate Anion, New J. Chem., Vol. 42, 2018, pp. 3917-3923.
https://doi.org/10.1039/C7NJ03425C.
[3] J. B. Birks, Excimers, Rep. Prog. Phys., Vol. 38, 1975, pp. 903-974. https://doi.org/10.1088/0034-4885/38/8/001.
[4] M. P. Heng, S. K. Sinniah, W. Y. Teoh, K. S. Sim, S. W. Ng, Y. K. Cheah, K. W. Tan, Synthesis Of A DNA-Targeting Nickel (II) Complex with Testosterone Thiosemicarbazone Which Exhibits Selective Cytotoxicity Towards Human Prostate Cancer Cells (Lncap), Spectrochim. Acta A, Vol. 150, 2015, pp. 360-372.
https://doi.org/10.1016/j.saa.2015.05.095.
[5] V. M. Leovac, S. B. Novaković, G. A. Bogdanović, M. D. Joksović, K. Mészáros Szécsényi, V. I. Češljević, Transition Metal Complexes with Thiosemicarbazide-based ligands. Part LVI: Nickel(II) Complex with 1,3-Diphenylpyrazole-4-carboxaldehyde Thiosemicarbazone and Unusually Deformed Coordination Geometry, Polyhedron, Vol. 26, 2007, pp. 3783-3792.
https://doi.org/10.1016/j.poly.2007.04.012.
[6] M. H. Nguyen, T. T. H. Khuat, H. H. Nguyen, T. H. Dinh, NiII, PdII Complexes with Pyrene-based Thiosemicarbazones: Syntheses, Molecular Structures, and Excimeric Emissions, Z. Anorg. Allg. Chem., Vol. 645, 2019, pp. 113-119. https://doi.org/10.1002/zaac.201800437.
[7] M. H. Nguyen, T. T. H. Khuat, D. Q. Do, H. H. Nguyen, T. H. Dinh, Anthracene-based Ni(II) Thiosemicarbazones with Novel Intramolecular π–π stackings, Inorg. Chem. Commun., Vol. 118, 2020, 107994.
https://doi.org/10.1016/j.inoche.2020.107994.
[8] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, OLEX2: a Complete Structure Solution, Refinement and Analysis Program, J. Appl. Crystallogr., Vol. 42, 2009, pp. 339-341. https://doi.org/10.1107/S0021889808042726.
[9] G. Sheldrick, SHELXT - Integrated Space Group and Crystal Structure Determination, Acta Cryst. A, Vol. 71, 2015, pp. 3-8.
https://doi.org/10.1107/S2053273314026370.
[10] F. A. Beckford, G. Leblanc, J. Thessing, M. Shaloski, B. J. Frost, L. Li, N.P. Seeram, Organometallic Ruthenium Complexes with Thiosemicarbazone Ligands: Synthesis, Structure and Cytotoxicity of [(η6-p-cymene)Ru(NS)Cl]+ (NS=9-anthraldehyde thiosemicarbazones), Inorg. Chem. Commun., Vol. 12, 2009, pp. 1094-1098. https://doi.org/10.1016/j.inoche.2009.08.034.
[11] A. N. Kate, A. A. Kumbhar, A. A. Khan, P. V. Joshi, V. G. Puranik, Monitoring Cellular Uptake and Cytotoxicity of Copper(II) Complex Using a Fluorescent Anthracene Thiosemicarbazone Ligand, Bioconjugate Chem., Vol. 25, 2014, pp. 102-114. https://doi.org/10.1021/bc400385d.
[12] M. H. Nguyen, T. T. H. Khuat, H. H. Nguyen, Q. M. Phung, T. H. Dinh, Emissive Pd(II) Thiosemicarbazones Bearing Anthracene: New Complexes with Unusual Coordination Mode, Inorg. Chem. Commun., Vol. 102, 2019, pp. 120-125. https://doi.org/10.1016/j.inoche.2019.02.028.
[13] J. Hu, M. H. Nguyen, J. H. K. Yip, Metallacyclophanes of 1,6-Bis(diphenylphosphino)pyrene: Excimeric Emission and Effect of Oxygen on Stability of the Rings, Inorg. Chem., Vol. 50, 2011, pp. 7429-7439. https://doi.org/10.1021/ic102441b.
[14] S.G. Telfer, T.M. McLean, M.R. Waterland, Exciton Coupling in Coordination Compounds, Dalton Trans., Vol. 40, 2011, pp. 3097-3108. https://doi.org/10.1039/C0DT01226B.