Pham Thi Thu Trang, Le Ha Giang, Nguyen Ba Manh, Trinh Duc Cong, Ngo Trinh Tung; Vu Tuan Anh

Main Article Content

Abstract

SiO2 and TiO2 sols were successfully synthesized by using sodium silicate and titanium chloride as Si and Ti sources. SiO2-TiO2 sol coated polyester/cotton fabric was fabricated by deep-coating method and using SiO2, TiO2 sols as coating materials. SiO2-TiO2 coated fabric were characterized by XRD, FTIR, TGA, SEM and EDX. From SEM image, it showed the SiO2, TiO2 particles of 20-30 nm which well deposited on fabric surface. TGA result revealed the significant improvement of thermal resistance and stability of SiO2-TiO2 coated fabric as compared to those of uncoated fabric. Flame retardant performance of SiO2-TiO2 coated fabrics was much better than that of uncoated fabric. Thus, SiO2-TiO2 coated fabric SiO2-TiO2 content of 26wt% showed the UL-94 classification of V-0 and LOI value of 30.3 were obtained. Moreover, mechanical property (tear strength) of SiO2-TiO2 coated fabrics were also improved.

Keywords: nano silica, titanium dioxide, polyester/cotton fabrics, flame retardant

References

[1] M. Leistner, A.A. Abu-Odeh, S.C. Rohmer, J.C. Grunlan, Water-based chitosan/ melamine polyphosphate multilayer nanocoating that extinguishes fire on polyester-cotton fabric, Carbohydr. Polym. 130 (2015) 227–232. https://doi.org/10.1016/j.carbpol.2015.05.005
[2] Y. Pan, L. Liu, X. Wang, L. Song, Y. Hu, Hypophosphorous acid cross-linked layerby-layer assembly of green polyelectrolytes on polyester-cotton blend fabrics for durable flame-retardant treatment, Carbohydr. Polym. 201 (2018) 1–8. https://doi.org/10.1016/j.carbpol.2018.08.044
[3] M.M. Abd EI-Hady, A. Farouk, S. Sharaf, Flame retardancy and UV protection of cotton based fabrics using nano ZnO and polycarboxylic acids, Carbohydr. Polym. 92 (2013) 400–406. https://doi.org/10.1016/j.carbpol.2012.08.085
[4] H. Yang, C.Q. Yang, Durable flame retardant finishing of the nylon/cotton blend fabric using a hydroxyl-functional organophosphorus oligomer, Polym. Degrad. Stab. 88 (2005) 363–370. https://doi.org/10.1016/j.polymdegradstab.2004.11.013
[5] J. Legler, A. Brouwer, Are brominated flame retardants endocrine disruptors? Environ. Int. 29 (2003) 879–885. https://doi.org/10.1016/S0160-4120(03)00104-1.
[6] F. Rahman, K.H. Langford, M.D. Scrimshaw, J.N. Lester, Polybrominated diphenyl ether (PBDE) flame retardants, Sci. Total Environ. 275 (2001) 1–17. https://doi.org/10.1016/S0048-9697(01)00852-X
[7] Q. Tang, B. Wang, G. Tang, Y. Shi, X. Qian, B. Yu, L. Song, Y. Hu, Preparation of microcapsulated ammonium polyphosphate pentaerythritol with glycidyl methacrylate, butyl methacrylate and their synergistic flame-retardancy for ethylene vinyl acetate copolymer, Polym. Adv. Technol. 25 (2014) 73–82. https://doi.org/10.1002/pat.3207
[8] F. Carosio, J. Alongi, G. Malucelli, Layer by Layer ammonium polyphosphate-based coating for flame retardancy of polyester-cotton blends, Carbohydr. Polym. 88 (2012) 1460–1469. https://doi.org/10.1016/j.carbpol.2012.02.049
[9] L. Yan, Z. Xu, X. Wang, Influence of nano-silica on the flame retardancy and smoke suppression properties of transparent intumescent fire-retardant coatings, Progress in Organic Coatings, 112 (2017) 1460–1469. https://doi.org/10.1016/j.porgcoat.2017.07.017
[10] H. Zhan, J. Lu, H. Yang, H. Yang, J. Lang and Q. Zhang, Synergistic Flame-Retardant Mechanism of Dicyclohexenyl Aluminum Hypophosphite and Nano-Silica, Polymers, Published: 11 (7) (2019) 1211. https://doi.org/10.1177/0892705717738287
[11] L. Qomariyah, F.N. Sasmita, H.R. Novaldi, W. Widiyastuti, Winardi, Preparation of Stable Colloidal Silica with Controlled Size Nano Spheres from Sodium Silicate Solution, Materials Science and Engineering, 395 (2018) 012017. https://doi.org/10.1088/1757-899X/395/1/012017
[12] T. Kashiwagi, J.W. Gilman, K.M. Butler, R.H. Harris. Flame retardant mechanism of silica gel/silica, Article in Fire and Materials, 24 (6) (2000) 277-289. https://doi.org/10.1002/1099101
8(200011/12)24:6<277::AID-AM746>3.0.CO;2-A
[13] A. El-Shafei, M. ElShemy, A. Abou-Okeil. Eco-friendly finishing agent for cotton fabrics to improve flame retardant and antibacterial properties, Carbohydrate Polymers, 118(2015) 83–90. https://doi.org/10.1016/j.carbpol.2014.11.007
[14] D.D. Fan, F. You, Y. Zhang, Z. Huang, Flame retardant effects of fabrics finished by hybrid nano-micro silica-based Sols, Procedia Engineering, 211 (2018) 160–168. https://doi.org/10.1016/j.proeng.2017.12.124
[15] C. Liu, T. Xing, B. Wei, G. Chen, Synergistic Effects and Mechanism of Modified Silica Sol Flame Retardant Systems on Silk Fabric, Materials, 11 (2018) 1842. https://doi.org/10.3390/ma11101842
[16] N. Sasirekha, B. Rajesh, Y.W. Chen, Synthesis of TiO2 sol in a neutral solution using TiCl4 as a precursor and H2O2 as an oxidizing agent, Thin Solid Films, 518 (2009) 43–48. https://doi.org/10.1016/j.tsf.2009.06.015
[17] K.B. Yazhinia and H.G. Prabu, Study on flame-retardant and UV-protection properties of cotton fabric functionalized with ppy–ZnO–CNT nanocomposite, RSC Adv, 5 (2015) 49062-49069. https://doi.org/10.1039/C5RA07487H
[18] I. Ahmada, C.W. Kan, Z. Yao, Photoactive cotton fabric for UV protection and self-cleaning, RSC Adv, 9 (2019) 18106-18114. https://doi.org/10.1039/C9RA02023C
[19] Z. Zhaoa, J. Zhoua, T. Fana, L. Lia, Z. Liua, Y. Liuab, M. Lu, An effective surface modification of polyester fabrics for improving the interfacial deposition of polypyrrole layer, Materials Chemistry and Physics, 203 (2018) 89-96. https://doi.org/10.1016/j.matchemphys.2017.09.062
[20] M. Mohammadi, Mitra Dadvar, Bahram Dabir, TiO2/SiO2 nanofluids as novel inhibitors for the stability of asphaltene particles in crude oil: Mechanistic understanding, screening, modeling, and optimization, Journal of Molecular Liquids, 238 (2017) 326-340. https://doi.org/10.1016/j. molliq.2017.05.014
[21] C. Chunga, M. Lee, E. Kyung Choe, Characterization of cotton fabric scouring by FT-IR ATR spectroscopy, Carbohydrate Polymers, 58 (2004) 417–420. https://doi.org/10.1016/j.carbpol.2004.08.005
[22] T. Huang, D. Li and M. Ek, Water repellency improvement of cellulosic textile fibers by betulin and a betulin-based copolymer, Cellulose, 25 (2018) 2115–2128. https://doi.org/10.1007/s10570-018-1695-5
[23] N. Lv, X. Wang, S. Pengab, L. Luo and R. Zhou, Superhydrophobic/superoleophilic cotton-oil absorbent: preparation and its application in oil/water separation, RSC Adv, 8 (2018) 30257-30264. https://doi.org/10.1039/C8RA05420G
[24] S. Sun, T. Deng, H. Ding, Y. Chen, W. Chen, Preparation of nano-TiO2-Coated SiO2 microsphere composite material and evaluation of its self-cleaning property, Nanomaterials, 7(11) (2017) 367. https://doi.org/10.3390/nano7110367
[25] H.A. Budiartia, R.N. Puspitasaria, A.M. Hattaa, Sekartedjoa and Doty Dewi Risantia, Synthesis and characterization of TiO2@SiO2 and SiO2@TiO2 core-shell structure using lapindo mud extract via sol-gel method, Procedia Engineering, 170 (2017) 65 – 71. https://doi.org/10.1016/j.proeng. 2017 .03.013
[26] J. Sun, K. Xu, C. Shi, J. Ma, W. Li, X. Shen, Influence of core/shell TiO2@SiO2 nanoparticles on cement hydration, Construction and Building Materials, 156 (2017) 114-122. https://doi.org/10.1016/j.conbuildmat.2017.08.124
[27] H. Zhang, X. Wang, N. Li, J. Xia, Q. Meng, J. Ding, TiO2/graphene oxide nanocomposites for photoreduction of heavy metal ions in reverse osmosis concentrate, RSC Adv, 60 (2018) 34241-34251. https://doi.org/10.1039/C8RA06681G