Nguyen Trong Nghia

Main Article Content

Abstract

CH and C2H5OH are important species in the combustion system. The reaction mechanism between CH and C2H5OH was elucidated at the CCSD(T)//BHandHLYP/6-311+G(3df, 2p) level of theory. The results of quantum chemistry calculation showed that the CH free radical preferentially inserted the O-H and C-H bonds of CH2 and CH3 groups in the C2H5OH molecule. Meanwhile, the insertion of the CH radical into C-O and C-C bonds are much more difficult due to the high energy barriers. The main products of the reaction are: CH3CHCH2 + OH, CH3C(OH)CH2 + H, CH3CHO + CH3, CH3COCH3 + H, C2H4 + CH3O, CH2O + CH3CH2 and C2H4 + CH2OH. The geometries of the species and the heats of reaction at 0 K are in good agreement with the available experimental results. These results can provide guidance for future experimental work.

Keywords: Methylidyne radical, ethanol, CCSD(T), reaction mechanism

References

[1] K. Devriendt, H. V. Look, B. Ceursters, J. Peeters, Kinetics of Formation of Chemiluminescent CH(A2Δ) by the Elementary Reactions of C2H(X2Σ+) with O(3P) and O2(X3Σg−): A Pulse Laser Photolysis Study, Chem, Phys, Lett,
Vol. 261, No. 4-5, 1996, pp. 450–456, https://doi.org/10.1016/0009-2614(96)01023-8.
[2] A. M. Bass, H. P. Broida, A Spectrophotometric Atlas of the Spectrum of CH from 3000 to 5000 A, Natl, Bur, Stand, Monogr, U. S, 1961.
[3] D. H. Mordaunt, I. R. Lambert, G. P. Morley, M. N. R. Ashfold, R. N. Dixon, L. Schnieder, K. H. Welge, Primary Product Channels in the Photodissociation of Methane at 121.6 nm, J. Chem, Phys, Vol. 98, 1993, pp. 2054-2065,
https://doi.org/10.1063/1.464237.
[4] K. T. Walsh, M. B. Long, M. A. Tanoff, M. D. Smooke, Experimental and Computational Study of CH, CH*, and OH* in an Axisymmetric Laminar Diffusion Flame, Symp, Combust, Proc, Vol. 27, No. 1, 1998, pp. 615-623, https://doi.org/10.1016/S0082-0784(98)80453-0.
[5] M. Röhrig, E. L. Petersen, D. F. Davidson, R. K. Hanson, C. T. Bowman, Measurement of the Rate Coefficient of the Reaction CH + O2 → Products in the Temperature Range 2200 to 2600 K, Int, J. Chem, Kinet, Vol. 29, No. 10, 1997, pp. 781-789, https://doi.org/10.1002/(SICI)1097-4601(1997)29:10<781::AID-KIN7>3.0.CO;2-I.
[6] Y. Wang, Y. Tang, Y. Shao, Theoretical Investigation on the Reaction of Methylidyne Radical (CH) with Acetaldehyde (CH3CHO), Comput, Theor, Chem, Vol. 1103, No. 1, 2017, pp. 56-62, https://doi.org/10.1016/j.comptc.2017.01.029.
[7] H. M. T. Nguyen, H. T. Nguyen, T. N. Nguyen, H. V. Hoang, L. Vereecken, Theoretical Study on the Reaction of the Methylidyne Radical, CH(X2Π), with Formaldehyde, CH2O, J. Phys, Chem. A, Vol. 118, No. 38, 2014, pp. 8861-8871, https://doi.org/10.1021/jp506175k.
[8] C. He, A. M. Thomas, G. R. Galimova, A. M. Mebel, R. I. Kaiser, Gas-Phase Formation of 1-Methylcyclopropene and 3-Methylcyclopropene via the Reaction of the Methylidyne Radical (CH; X2Π) with Propylene (CH3CHCH2; X1A′), J. Phys, Chesco, K. J. Smith, G. Meloni, Synchrotron Photoionization Study of Furan and 2-Methylfuran Reactions with Methylidyne Radical (CH) at 298 K, J. Phys, Chem. A, Vol. 122, No. 1, 2018, pp. 280-291, https://doi.org/10.1021/acs.jpca.7b10382.
[10] D. G. Johnson, M. A. Blitz, W. P. Seakins, The Reaction of Methylidene (CH) with Methanol Isotopomers, Phys, Chem, Chem, Phys, Vol. 2, 2000, pp. 2549-2554, https://doi.org/10.1039/B001380N.
[11] X. B. Zhang, J. J. Liu, Z. S. Li, J. Y. Liu, C. C. Sun, Theoretical Study on the Mechanism of the CH + CH3OH Reaction, J. Phys, Chem. A, Vol. 106, No. 15, 2002, pp. 3814-3818, https://doi.org/10.1021/jp014602w.
[12] M. J. Frisch et al., Gaussian 09, Revision C.01, Gaussian, Inc, Wallingford CT., 2010.
[13] A. D. Becke, A New Mixing of Hartree-Fock and Local Density-functional Theories, J. Chem, Phys, Vol. 98, 1993, pp. 1372-77, https://doi.org/10.1063/1.464304.
[14] J. A. Pople, M. Head-Gordon, K. Raghavachari, Quadratic Configuration Interaction - A General Technique for Determining Electron Correlation Energies, J. Chem, Phys, Vol. 87, 1987, pp. 5968-75, https://doi.org/10.1063/1.453520.
[15] L. V. Gurvich, I. V. Veyts, C. B. Alcock, Thermodynamic Properties of Individual Substances, Fouth Edition, Hemisphere Pub. Co., New York, 1989.
[16] K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure, IV, Constants of Diatomic Molecules, Van Nostrand Reinhold Co., 1979.
[17] W. Malcolm, Jr. Chase, Nist-Janaf Thermochemical Tables, Fourth Edition, American Institute of Physics, New York, USA, 1998.
[18] A. Burcat, B. Ruscic, Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables; Argonne National Laboratory, The University of Chicago, 2005.
[19] B. Ruscic, J. E. Boggs, A. Burcat, A. G. Csaszar, J. Demaison, R. Janoschek, J. M. L. Martin, M. L. Morton, M. J. Rossi, J. F. Stanton, P. G. Szalay, P. R. Westmoreland, F. Zabel, T. Berces, IUPAC Critical Evaluation of Thermochemical Properties of Selected Radicals, Part I, J. Phys, Chem, Ref, Data, Vol. 34, 2005, pp. 573-656, https://doi.org/10.1063/1.1724828.
[20] M. Frenkel, K. N. Marsh, R. C. Wilhoit, G. J. Kabo, G. N. Roganov, Thermodynamics of Organic Compounds in the Gas State, Thermodynamics Research Center, College Station, TX, 1994.
[21] J. Berkowitz, G. B. Ellison, D. Gutman, Three Methods To Measure RH Bond Energies, J. Phys, Chem, Vol. 98, No. 11, 1994, pp. 2744-2765, https://doi.org/10.1021/j100062a009.