Density Functional Theory Study on the Insertion Reaction Mechanism of Methylidyne with Ethanol
Main Article Content
Abstract
CH and C2H5OH are important species in the combustion system. The reaction mechanism between CH and C2H5OH was elucidated at the CCSD(T)//BHandHLYP/6-311+G(3df, 2p) level of theory. The results of quantum chemistry calculation showed that the CH free radical preferentially inserted the O-H and C-H bonds of CH2 and CH3 groups in the C2H5OH molecule. Meanwhile, the insertion of the CH radical into C-O and C-C bonds are much more difficult due to the high energy barriers. The main products of the reaction are: CH3CHCH2 + OH, CH3C(OH)CH2 + H, CH3CHO + CH3, CH3COCH3 + H, C2H4 + CH3O, CH2O + CH3CH2 and C2H4 + CH2OH. The geometries of the species and the heats of reaction at 0 K are in good agreement with the available experimental results. These results can provide guidance for future experimental work.
References
Vol. 261, No. 4-5, 1996, pp. 450–456, https://doi.org/10.1016/0009-2614(96)01023-8.
[2] A. M. Bass, H. P. Broida, A Spectrophotometric Atlas of the Spectrum of CH from 3000 to 5000 A, Natl, Bur, Stand, Monogr, U. S, 1961.
[3] D. H. Mordaunt, I. R. Lambert, G. P. Morley, M. N. R. Ashfold, R. N. Dixon, L. Schnieder, K. H. Welge, Primary Product Channels in the Photodissociation of Methane at 121.6 nm, J. Chem, Phys, Vol. 98, 1993, pp. 2054-2065,
https://doi.org/10.1063/1.464237.
[4] K. T. Walsh, M. B. Long, M. A. Tanoff, M. D. Smooke, Experimental and Computational Study of CH, CH*, and OH* in an Axisymmetric Laminar Diffusion Flame, Symp, Combust, Proc, Vol. 27, No. 1, 1998, pp. 615-623, https://doi.org/10.1016/S0082-0784(98)80453-0.
[5] M. Röhrig, E. L. Petersen, D. F. Davidson, R. K. Hanson, C. T. Bowman, Measurement of the Rate Coefficient of the Reaction CH + O2 → Products in the Temperature Range 2200 to 2600 K, Int, J. Chem, Kinet, Vol. 29, No. 10, 1997, pp. 781-789, https://doi.org/10.1002/(SICI)1097-4601(1997)29:10<781::AID-KIN7>3.0.CO;2-I.
[6] Y. Wang, Y. Tang, Y. Shao, Theoretical Investigation on the Reaction of Methylidyne Radical (CH) with Acetaldehyde (CH3CHO), Comput, Theor, Chem, Vol. 1103, No. 1, 2017, pp. 56-62, https://doi.org/10.1016/j.comptc.2017.01.029.
[7] H. M. T. Nguyen, H. T. Nguyen, T. N. Nguyen, H. V. Hoang, L. Vereecken, Theoretical Study on the Reaction of the Methylidyne Radical, CH(X2Π), with Formaldehyde, CH2O, J. Phys, Chem. A, Vol. 118, No. 38, 2014, pp. 8861-8871, https://doi.org/10.1021/jp506175k.
[8] C. He, A. M. Thomas, G. R. Galimova, A. M. Mebel, R. I. Kaiser, Gas-Phase Formation of 1-Methylcyclopropene and 3-Methylcyclopropene via the Reaction of the Methylidyne Radical (CH; X2Π) with Propylene (CH3CHCH2; X1A′), J. Phys, Chesco, K. J. Smith, G. Meloni, Synchrotron Photoionization Study of Furan and 2-Methylfuran Reactions with Methylidyne Radical (CH) at 298 K, J. Phys, Chem. A, Vol. 122, No. 1, 2018, pp. 280-291, https://doi.org/10.1021/acs.jpca.7b10382.
[10] D. G. Johnson, M. A. Blitz, W. P. Seakins, The Reaction of Methylidene (CH) with Methanol Isotopomers, Phys, Chem, Chem, Phys, Vol. 2, 2000, pp. 2549-2554, https://doi.org/10.1039/B001380N.
[11] X. B. Zhang, J. J. Liu, Z. S. Li, J. Y. Liu, C. C. Sun, Theoretical Study on the Mechanism of the CH + CH3OH Reaction, J. Phys, Chem. A, Vol. 106, No. 15, 2002, pp. 3814-3818, https://doi.org/10.1021/jp014602w.
[12] M. J. Frisch et al., Gaussian 09, Revision C.01, Gaussian, Inc, Wallingford CT., 2010.
[13] A. D. Becke, A New Mixing of Hartree-Fock and Local Density-functional Theories, J. Chem, Phys, Vol. 98, 1993, pp. 1372-77, https://doi.org/10.1063/1.464304.
[14] J. A. Pople, M. Head-Gordon, K. Raghavachari, Quadratic Configuration Interaction - A General Technique for Determining Electron Correlation Energies, J. Chem, Phys, Vol. 87, 1987, pp. 5968-75, https://doi.org/10.1063/1.453520.
[15] L. V. Gurvich, I. V. Veyts, C. B. Alcock, Thermodynamic Properties of Individual Substances, Fouth Edition, Hemisphere Pub. Co., New York, 1989.
[16] K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure, IV, Constants of Diatomic Molecules, Van Nostrand Reinhold Co., 1979.
[17] W. Malcolm, Jr. Chase, Nist-Janaf Thermochemical Tables, Fourth Edition, American Institute of Physics, New York, USA, 1998.
[18] A. Burcat, B. Ruscic, Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables; Argonne National Laboratory, The University of Chicago, 2005.
[19] B. Ruscic, J. E. Boggs, A. Burcat, A. G. Csaszar, J. Demaison, R. Janoschek, J. M. L. Martin, M. L. Morton, M. J. Rossi, J. F. Stanton, P. G. Szalay, P. R. Westmoreland, F. Zabel, T. Berces, IUPAC Critical Evaluation of Thermochemical Properties of Selected Radicals, Part I, J. Phys, Chem, Ref, Data, Vol. 34, 2005, pp. 573-656, https://doi.org/10.1063/1.1724828.
[20] M. Frenkel, K. N. Marsh, R. C. Wilhoit, G. J. Kabo, G. N. Roganov, Thermodynamics of Organic Compounds in the Gas State, Thermodynamics Research Center, College Station, TX, 1994.
[21] J. Berkowitz, G. B. Ellison, D. Gutman, Three Methods To Measure RH Bond Energies, J. Phys, Chem, Vol. 98, No. 11, 1994, pp. 2744-2765, https://doi.org/10.1021/j100062a009.