Nguyen Van Nghia, Pham Manh Thao, Nguyen Van Ky, Ngo Quy Quyen, Pham Duy Long, Dang Tran Chien, Nguyen Si Hieu

Main Article Content

Abstract

In this work, NaNi0.5Ti0.5O2 cathode materials of sodium ion batteries were synthesized by a pre-milling combined with solid-state reaction method using sodium hydroxide (NaOH), nickel (II) acetate (2(CH3COO)Ni.4H2O), and titanium dioxide (TiO2) as the precursors. Results of X-ray diffraction analysis of the materials obtained after the milling and calcination processes revealed that the increment of the pre-milling time improved the reactivity of NaOH and TiO2, thereby significantly reduced the content of NiO impurity in the NaNi0.5Ti0.5O2 product. The as-synthesized cathode material possessed an excellent electrochemical performance with 77% capacity (compared to the second cycle) retained after 50 cycles of charge/discharge, and 60% capacity retention when the rate of charge/discharge increased from 0.5 to 8 C.

Keywords: Sodium ion battery, cathode material, transition-metal oxide, solid state reaction.

References

[1] V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. C. Gonzalez, T. Rojo, Na-ion Batteries, Recent Advances and Present Challenges to Become Low Cost Energy Storage Systems, Energy Environ, Sci., Vol. 5, 2012, pp. 5884-5901, https://doi.org/10.1039/C2EE02781J.
[2] J. M. Tarascon, Is Lithium the New Gold?, Nat. Chem., Vol. 2, 2010, pp. 510, https://doi.org/10.1038/nchem.680.
[3] S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Voltage, Stability and Diffusion Barrier Differences Between Sodium-ion and Lithium-ion Intercalation Materials, Energy Environ. Sci., Vol. 4, 2011, pp. 3680-3688, https://doi.org/10.1039/C1EE01782A.
[4] P. K. Nayak, L. Yang, W. Brehm, P. Adelhelm, From Lithium‐Ion to Sodium‐Ion Batteries: Advantages, Challenges, and Surprises, Angew, Chem. Int. Ed., Vol. 57, 2018 pp. 102-120, https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201703772.
[5] M. M. Rahman, I. Sultana, S. Mateti, J. Liu, N. Sharma, Y. Chen, Maricite NaFePO4/C/graphene: a Novel Hybrid Cathode for Sodium-ion Batteries, J. Mater, Chem. A, Vol. 5, 2017, pp. 16616-16621, https://doi.org/10.1039/C7TA04946C.
[6] X. Jiang, L. Yang, B. Ding, B. Qu, G. Ji, J. Y. Lee, Extending the Cycle Life of Na3V2(PO4)3 Cathodes in Sodium-ion Batteries Through Interdigitated Carbon Scaffolding, J. Mater, Chem. A, Vol. 4, 2016, pp. 14669-14674,
https://doi.org/10.1039/C6TA05030A.
[7] P. Barpanda, G. Liu, C. D. Ling, M. Tamaru, M. Avdeev, S. C. Chung, Y. Yamada, A. Yamada, Na2FeP2O7: A Safe Cathode for Rechargeable Sodium-ion Batteries, Chem. Mater., Vol. 25, 2013, pp. 3480-3487, https://doi.org/10.1021/cm401657c.
[8] W. Guan, B. Pan, P. Zhou, J. Mi, D. Zhang, A High Capacity, Good Safety and Low Cost Na2FeSiO4-Based Cathode for Rechargeable Sodium-Ion Battery, ACS Appl, Mater, Interfaces, Vol. 9, 2017, pp. 22369-22377,
https://doi.org/10.1021/acsami.7b02385.
[9] A. K. Rai, L. T. Anh, J. Gim, V. Mathew, J. Kim, Electrochemical Properties of NaxCoO2 (x~0.71) Cathode for Rechargeable Sodium-ion Batteries, Ceram, Int., Vol. 40, 2014, pp. 2411-2417, https://doi.org/10.1016/j.ceramint.2013.08.013.
[10] P. F. Wang, Y. You, Y. X. Yin, Y. G. Guo, An O3-type NaNi0.5Mn0.5O2 Cathode for Sodium-ion Batteries with Improved Rate Performance and Cycling Stability, J. Mater. Chem. A, Vol. 4, 2016, pp. 17660-17664, https://doi.org/10.1039/C6TA07589D.
[11] M. Sathiya, K. Hemalatha, K. Ramesha, J. M. Tarascon, A. S. Prakash, Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2, Chem. Mater., Vol. 24, 2012, pp. 1846-1853, https://doi.org/10.1021/cm300466b.
[12] H. Yu, S. Guo, Y. Zhu, M. Ishida, H. Zhou, Novel Titanium-based O3-type NaTi0.5Ni0.5O2 as a Cathode Material for Sodium Ion Batteries, Chem, Commun., Vol. 50, 2014, pp. 457-459, https://doi.org/10.1039/c3cc47351a.
[13] H. Wang, Y. Xiao, C. Sun, C. Lai, X. Ai, A Type of Sodium-ion Full-cell with a Layered NaNi0.5Ti0.5O2 Cathode and a Pre-sodiated Hard Carbon Anode, RSC Adv., Vol. 5, 2015, pp. 106519-106522, https://doi.org/10.1039/C5RA21235A.
[14] S. Maletti, A. Sarapulova, A. Schökel, D. Mikhailova, Operando Studies on the NaNi0.5Ti0.5O2 Cathode for Na-Ion Batteries: Elucidating Titanium as a Structure Stabilizer, ACS Appl, Mater, Interfaces, Vol. 11, 2019, pp. 33923-33930, https://doi.org/10.1021/acsami.9b10352.
[15] J. R. Carvajal, FullProf Program: Rietveld, Profile Matching and Integrated Intensities Refinement of X-Ray and/or Neutron Data (Powder and/or Single-Crystal), Laboratoire Leon Brillouin (CEA-CNRS), Release 2007.
[16] C. Faure, C. Delmas, M. Fouassier, Characterization of a Turbostratic α-nickel Hydroxide Quantitatively Obtained from an NiSO4 Solution, J. Power Sources, Vol. 35, 1991, pp. 279-290, https://doi.org/10.1016/0378-7753(91)80112-B.
[17] B. Ohtani, O. O. P. Mahaney, D. Li, R. Abe, What is Degussa (Evonik) P25? Crystalline Composition Analysis, Reconstruction from Isolated Pure Particles and Photocatalytic Activity Test, J. Photochem, Photobiol. A, Vol. 216, 2010, pp. 179-182, https://doi.org/10.1016/j.jphotochem.2010.07.024.
[18] D. S. Hall, D. J. Lockwood, C. Bock, B. R. MacDougall, Nickel Hydroxides and Related Materials: a Review of Their Structures, Synthesis and Properties, Proc. R. Soc. A, Vol. 471, 2014, pp. 1-65, http://doi.org/10.1098/rspa.2014.0792.
[19] K. T. Kim, G. Ali, K. Y. Chung, Anatase Titania Nanorods as an Intercalation Anode Material for Rechargeable Sodium Batteries, Nano Lett., Vol. 14, 2014, pp. 416-22, https://doi.org/10.1021/nl402747x.
[20] D. Yan, L. Pan, A new Sodium Storage Mechanism of TiO2 for Sodium Ion Batteries, Inorg, Chem. Front., Vol. 3, 2016, pp. 464-468, https://doi.org/10.1039/C5QI00226E.
[21] C. Hou, B. Hu, J. Zhu, Photocatalytic Degradation of Methylene Blue Over TiO2 Pretreated with Varying Concentrations of NaOH, Catalysts, Vol. 8, 2018, pp. 1-13, https://doi.org/10.3390/catal8120575.
[22] L. Wang, X. Y. Qin, The Effect of Mechanical Milling on the Formation of Nanocrystalline Mg2Si through Solid-state Reaction, Scr. Mater., Vol. 49, 2003, pp. 243-248, https://doi.org/10.1016/S1359-6462(03)00241-0.
[23] J. L Lábár, Consistent Indexing of a (set of) SAED Pattern(s) with the ProcessDiffraction Program, Ultramicroscopy, Vol. 103, 2005, pp. 237-249, https://doi.org/10.1016/j.ultramic.2004.12.004.
[24] S. Uehara, TEM and XRD Study of Antigorite Superstructures, Can, Mineral., Vol. 36, 1998, pp. 1595-1605.
[25] D. E. Newbury, N. W. M. Ritchie, Performing Elemental Microanalysis with High Accuracy and High Precision by Scanning Electron Microscopy/silicon drift Detector Energy-Dispersive X-ray Spectrometry (SEM/SDD-EDS), J. Mater. Sci., Vol. 50, 2015, pp. 493-518, https://doi.org/10.1007/s10853-014-8685-2.
[26] K. Kang, D. Carlier, J. Reed, E. M. Arroyo, G. Ceder, L. Croguennec, C. Delmas, Synthesis and Electrochemical Properties of Layered Li0.9Ni0.45Ti0.55O2, Chem. Mater., Vol. 15, 2003, pp. 4503-4507, https://doi.org/10.1021/cm034455+.
[27] A. Maazaz, C. Delmas, P. Hagenmuller, A Study of the NaxTiO2 System by Electrochemical Deintercalation, J. Incl. Phenom., Vol. 1, 1983, pp. 45-51, https://doi.org/10.1007/bf00658014.
[28] S. Torai, M. Nakagomi, S. Yoshitake, S. Yamaguchi, N. Oyama, State-of-health Estimation of LiFePO4/graphite Batteries Based on a Model Using Differential Capacity, J. Power Sources, Vol. 306, 2016, pp. 62-69, https://doi.org/10.1016/j.jpowsour.2015.11.070.
[29] P. F. Wang, H. R. Yao, X. Y. Liu, J. N. Zhang, L. Gu, X. Q. Yu, Y. X. Yin, Y. G. Guo, Ti‐Substituted NaNi0.5Mn0.5‐xTixO2 Cathodes with Reversible O3−P3 Phase Transition for High‐Performance Sodium‐Ion Batteries, Adv. Mater., Vol. 29, No. 19, 2017, pp 1-7,https://doi.org/10.1002/adma.201700210.