Synthesis and Application of NaNi0.5Ti0.5O2 as Electrode Material for Sodium Ion Batteries
Main Article Content
Abstract
In this work, NaNi0.5Ti0.5O2 cathode materials of sodium ion batteries were synthesized by a pre-milling combined with solid-state reaction method using sodium hydroxide (NaOH), nickel (II) acetate (2(CH3COO)Ni.4H2O), and titanium dioxide (TiO2) as the precursors. Results of X-ray diffraction analysis of the materials obtained after the milling and calcination processes revealed that the increment of the pre-milling time improved the reactivity of NaOH and TiO2, thereby significantly reduced the content of NiO impurity in the NaNi0.5Ti0.5O2 product. The as-synthesized cathode material possessed an excellent electrochemical performance with 77% capacity (compared to the second cycle) retained after 50 cycles of charge/discharge, and 60% capacity retention when the rate of charge/discharge increased from 0.5 to 8 C.
References
[2] J. M. Tarascon, Is Lithium the New Gold?, Nat. Chem., Vol. 2, 2010, pp. 510, https://doi.org/10.1038/nchem.680.
[3] S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Voltage, Stability and Diffusion Barrier Differences Between Sodium-ion and Lithium-ion Intercalation Materials, Energy Environ. Sci., Vol. 4, 2011, pp. 3680-3688, https://doi.org/10.1039/C1EE01782A.
[4] P. K. Nayak, L. Yang, W. Brehm, P. Adelhelm, From Lithium‐Ion to Sodium‐Ion Batteries: Advantages, Challenges, and Surprises, Angew, Chem. Int. Ed., Vol. 57, 2018 pp. 102-120, https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201703772.
[5] M. M. Rahman, I. Sultana, S. Mateti, J. Liu, N. Sharma, Y. Chen, Maricite NaFePO4/C/graphene: a Novel Hybrid Cathode for Sodium-ion Batteries, J. Mater, Chem. A, Vol. 5, 2017, pp. 16616-16621, https://doi.org/10.1039/C7TA04946C.
[6] X. Jiang, L. Yang, B. Ding, B. Qu, G. Ji, J. Y. Lee, Extending the Cycle Life of Na3V2(PO4)3 Cathodes in Sodium-ion Batteries Through Interdigitated Carbon Scaffolding, J. Mater, Chem. A, Vol. 4, 2016, pp. 14669-14674,
https://doi.org/10.1039/C6TA05030A.
[7] P. Barpanda, G. Liu, C. D. Ling, M. Tamaru, M. Avdeev, S. C. Chung, Y. Yamada, A. Yamada, Na2FeP2O7: A Safe Cathode for Rechargeable Sodium-ion Batteries, Chem. Mater., Vol. 25, 2013, pp. 3480-3487, https://doi.org/10.1021/cm401657c.
[8] W. Guan, B. Pan, P. Zhou, J. Mi, D. Zhang, A High Capacity, Good Safety and Low Cost Na2FeSiO4-Based Cathode for Rechargeable Sodium-Ion Battery, ACS Appl, Mater, Interfaces, Vol. 9, 2017, pp. 22369-22377,
https://doi.org/10.1021/acsami.7b02385.
[9] A. K. Rai, L. T. Anh, J. Gim, V. Mathew, J. Kim, Electrochemical Properties of NaxCoO2 (x~0.71) Cathode for Rechargeable Sodium-ion Batteries, Ceram, Int., Vol. 40, 2014, pp. 2411-2417, https://doi.org/10.1016/j.ceramint.2013.08.013.
[10] P. F. Wang, Y. You, Y. X. Yin, Y. G. Guo, An O3-type NaNi0.5Mn0.5O2 Cathode for Sodium-ion Batteries with Improved Rate Performance and Cycling Stability, J. Mater. Chem. A, Vol. 4, 2016, pp. 17660-17664, https://doi.org/10.1039/C6TA07589D.
[11] M. Sathiya, K. Hemalatha, K. Ramesha, J. M. Tarascon, A. S. Prakash, Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2, Chem. Mater., Vol. 24, 2012, pp. 1846-1853, https://doi.org/10.1021/cm300466b.
[12] H. Yu, S. Guo, Y. Zhu, M. Ishida, H. Zhou, Novel Titanium-based O3-type NaTi0.5Ni0.5O2 as a Cathode Material for Sodium Ion Batteries, Chem, Commun., Vol. 50, 2014, pp. 457-459, https://doi.org/10.1039/c3cc47351a.
[13] H. Wang, Y. Xiao, C. Sun, C. Lai, X. Ai, A Type of Sodium-ion Full-cell with a Layered NaNi0.5Ti0.5O2 Cathode and a Pre-sodiated Hard Carbon Anode, RSC Adv., Vol. 5, 2015, pp. 106519-106522, https://doi.org/10.1039/C5RA21235A.
[14] S. Maletti, A. Sarapulova, A. Schökel, D. Mikhailova, Operando Studies on the NaNi0.5Ti0.5O2 Cathode for Na-Ion Batteries: Elucidating Titanium as a Structure Stabilizer, ACS Appl, Mater, Interfaces, Vol. 11, 2019, pp. 33923-33930, https://doi.org/10.1021/acsami.9b10352.
[15] J. R. Carvajal, FullProf Program: Rietveld, Profile Matching and Integrated Intensities Refinement of X-Ray and/or Neutron Data (Powder and/or Single-Crystal), Laboratoire Leon Brillouin (CEA-CNRS), Release 2007.
[16] C. Faure, C. Delmas, M. Fouassier, Characterization of a Turbostratic α-nickel Hydroxide Quantitatively Obtained from an NiSO4 Solution, J. Power Sources, Vol. 35, 1991, pp. 279-290, https://doi.org/10.1016/0378-7753(91)80112-B.
[17] B. Ohtani, O. O. P. Mahaney, D. Li, R. Abe, What is Degussa (Evonik) P25? Crystalline Composition Analysis, Reconstruction from Isolated Pure Particles and Photocatalytic Activity Test, J. Photochem, Photobiol. A, Vol. 216, 2010, pp. 179-182, https://doi.org/10.1016/j.jphotochem.2010.07.024.
[18] D. S. Hall, D. J. Lockwood, C. Bock, B. R. MacDougall, Nickel Hydroxides and Related Materials: a Review of Their Structures, Synthesis and Properties, Proc. R. Soc. A, Vol. 471, 2014, pp. 1-65, http://doi.org/10.1098/rspa.2014.0792.
[19] K. T. Kim, G. Ali, K. Y. Chung, Anatase Titania Nanorods as an Intercalation Anode Material for Rechargeable Sodium Batteries, Nano Lett., Vol. 14, 2014, pp. 416-22, https://doi.org/10.1021/nl402747x.
[20] D. Yan, L. Pan, A new Sodium Storage Mechanism of TiO2 for Sodium Ion Batteries, Inorg, Chem. Front., Vol. 3, 2016, pp. 464-468, https://doi.org/10.1039/C5QI00226E.
[21] C. Hou, B. Hu, J. Zhu, Photocatalytic Degradation of Methylene Blue Over TiO2 Pretreated with Varying Concentrations of NaOH, Catalysts, Vol. 8, 2018, pp. 1-13, https://doi.org/10.3390/catal8120575.
[22] L. Wang, X. Y. Qin, The Effect of Mechanical Milling on the Formation of Nanocrystalline Mg2Si through Solid-state Reaction, Scr. Mater., Vol. 49, 2003, pp. 243-248, https://doi.org/10.1016/S1359-6462(03)00241-0.
[23] J. L Lábár, Consistent Indexing of a (set of) SAED Pattern(s) with the ProcessDiffraction Program, Ultramicroscopy, Vol. 103, 2005, pp. 237-249, https://doi.org/10.1016/j.ultramic.2004.12.004.
[24] S. Uehara, TEM and XRD Study of Antigorite Superstructures, Can, Mineral., Vol. 36, 1998, pp. 1595-1605.
[25] D. E. Newbury, N. W. M. Ritchie, Performing Elemental Microanalysis with High Accuracy and High Precision by Scanning Electron Microscopy/silicon drift Detector Energy-Dispersive X-ray Spectrometry (SEM/SDD-EDS), J. Mater. Sci., Vol. 50, 2015, pp. 493-518, https://doi.org/10.1007/s10853-014-8685-2.
[26] K. Kang, D. Carlier, J. Reed, E. M. Arroyo, G. Ceder, L. Croguennec, C. Delmas, Synthesis and Electrochemical Properties of Layered Li0.9Ni0.45Ti0.55O2, Chem. Mater., Vol. 15, 2003, pp. 4503-4507, https://doi.org/10.1021/cm034455+.
[27] A. Maazaz, C. Delmas, P. Hagenmuller, A Study of the NaxTiO2 System by Electrochemical Deintercalation, J. Incl. Phenom., Vol. 1, 1983, pp. 45-51, https://doi.org/10.1007/bf00658014.
[28] S. Torai, M. Nakagomi, S. Yoshitake, S. Yamaguchi, N. Oyama, State-of-health Estimation of LiFePO4/graphite Batteries Based on a Model Using Differential Capacity, J. Power Sources, Vol. 306, 2016, pp. 62-69, https://doi.org/10.1016/j.jpowsour.2015.11.070.
[29] P. F. Wang, H. R. Yao, X. Y. Liu, J. N. Zhang, L. Gu, X. Q. Yu, Y. X. Yin, Y. G. Guo, Ti‐Substituted NaNi0.5Mn0.5‐xTixO2 Cathodes with Reversible O3−P3 Phase Transition for High‐Performance Sodium‐Ion Batteries, Adv. Mater., Vol. 29, No. 19, 2017, pp 1-7,https://doi.org/10.1002/adma.201700210.