Nguyen Thi Thu Huong, Nguyen Thi Kim Lien, Nguyen Huy Hoang

Main Article Content

Abstract

Urea cycle disorder is a group of rare, inherited metabolic disorders in the pathway transforming ammonia to urea. The mutations in genes coding for 6 enzymes that are participated including carbamoyl phosphate synthase I (CPSI), ornithine transcarbamylase (OTC), argininosuccinate synthase (ASS1), argininosuccinate lyase (ASL), arginase (ARG1), and N-acetyl glutamate synthase (NAGS), and 2 transport systems ((ornithine translocase (ONT1), citrin)) in the urea cycle are responsible for ammonia accumulation in the blood. Hyperammonemia is the cause of severe neurological symptoms and even death. In almost all cases, clinical examinations and biochemical experiments are necessary, but insufficient information for an accurate diagnosis. Mutation analysis is an effective method to confirm the diagnosis and could be the basis for genetic counseling. The rapid development and widely using of next generation sequencing (NGS) have brought incredible advances in molecular diagnosis of genetic diseases in general. In this article, we systematize the UCD genetic studies applying NGS method, thereby providing a basis for not only disease diagnosis but also future research

Keywords: Genetic Diseases; Mutations; Next Generation Sequencing (NGS); Urea Cycle Disorder (UCD); Variantions

References

[1] N. A. Mew, K. L. Simpson, A. L. Gropman, B. C. Lanpher, K. A. Chapman, M. L. Summar, Urea Cycle Disorders Overview, GeneReviews® [Internet] Seattle (WA): University of Washington, Seattle (2003 Updated 2017). PMID: 20301396, Bookshelf ID: NBK1217.
[2] W. L. Stone, H. Basit, G. B. Jaishankar, Urea Cycle Disorders, StatPearls Publishing (2021) PMID: 29493985, Bookshelf ID: NBK482363.
[3] F. Endo, T. Matsuura, K.Yanagita, I. Matsuda, Clinical Manifestations of Inborn Errors of the Urea Cycle and Related Metabolic Disorders during Childhood, J Nutr., Vol. 134, No. 6, 2004, pp. 1605S-1609S. https://doi.org/10.1093/jn/134.6.1605S.
[4] K. Schwarze, J. Buchanan, J. M. Fermont, H. Dreau, M. W. Tilley, J. M. Taylor, P. Antoniou, S. J. L. Knight, C. Camps, M. M. Pentony, The Complete Costs of Genome Sequencing: A Microcosting Study in Cancer and Rare Diseases from a Single Center in The United Kingdom, Genet Med., Vol. 22, No. 1, 2020, pp. 85-94. https://doi.org/ 10.1038/s41436-019-0618-7.
[5] M. Choi, U. I, Scholl, W. Ji, T. Liu, I. R.Tikhonova, P. Zumbo, A. Nayir, A. Bakkaloğlu, S. Ozen, S. Sanjad, Genetic diagnosis by Whole Exome Capture and Massively Parallel DNA Sequencing, Proc Natl Acad Sci USA, Vol. 106, No. 45, 2009, pp. 19096-19101. https://doi.org/ 10.1073/pnas.0910672106.
[6] S. Morganti, P. Tarantino, E. Ferraro, P. D’Amico, G. Viale, D. Trapani, B. A. Duso, G. Curigliano, Role of Next-Generation Sequencing Technologies in Personalized Medicine, P5 eHealth: An Agenda for the Health Technologies of the Future, Springer International Publishing, 2020, pp. 125-154,
https://doi.org/ 10.1007/978-3-030-27994-3_8.
[7] S. Behjati, P. S. Tarpey: What is Next Generation Sequencing? Arch Dis Child Educ Pract, Vol. 98, No. 6, pp.236-238.
http://dx.doi.org/10.1136/archdischild-2013-304340
[8] A. Grada, K. Weinbrecht, Next-generation Sequencing: Methodology and Application, eJIFCC Vol. 133, No. 8, 2013, pp. e11,
https://doi.org/ 10.1038/jid.2013.248.
[9] K. R. Kukurba, S. B. Montgomery, RNA Sequencing and Analysis, Cold Spring Harb Protoc., Vol. 11, 2015, pp. 951-969, https://doi.org/10.1101/pdb.top084970
[10] C. D. Resta, S. G. Albiati, P. Carrera, M. Ferrari, Next-generation Sequencing Approach for the Diagnosis of Human Diseases: Open Challenges and New Opportunities, eJIFCC, Vol. 29, 2018, pp. 11.
[11] V. Rüfenacht, J. Häberle, Mutation Analysis of Urea Cycle Disorders, Journal of Pediatric Biochemistry, Vol. 4, 2014, pp. 33-43. https://doi.org/ 10.3233/JPB-140104
[12] U. Finckh, A. Kohlschütter, H. Schäfer, K. Sperhake, J. P. Colombo, A. Gal, Prenatal Diagnosis of Carbamoyl Phosphate Synthetase I Deficiency by Identification of a Missense Mutation in CPS1, Human mutation, Vol. 12, No. 3, 1998, pp. 206-211.
https://doi.org/10.1002/(SICI)1098-1004(1998)12:3<206::AID-HUMU8>3.0.CO;2-E
[13] L. E. Laróvere, C. J. Angaroni, S. L. Antonozzi, M. B. Bezard, M. Shimohama, R. Dodelson de Kremer, Citrullinemia Type I, Classical Variant. Identification of ASS∼p.G390R (c.1168G>A) Mutation in Families of a Limited Geographic Area of Argentina: A Possible Population Cluster, Clinical Biochemistry, Vol. 42, No. 10, 2009, pp. 1166-1168.
https://doi.org/10.1016/j.clinbiochem.2009.03.024
[14] R. Choi, H. D. Park, M. Yang, C. S. Ki, S.Y. Lee, J. W. Kim, J. Song, Y. S. Chang, W. S. Park, Novel Pathogenic Variant (c.580C>T) in the CPS1 Gene in a Newborn With Carbamoyl Phosphate Synthetase 1 Deficiency Identified by Whole Exome Sequencing, Ann Lab Med, Vol. 37, No. 1, 2017, pp. 58-62. https://doi.org/ 10.3343/alm.2017.37.1.58.
[15] Q. Zhou, H. Huang, L. Ma, T. Zhu, The Application of Next-Generation Sequencing (NGS) in Neonatal-Onset Urea Cycle Disorders (UCDs): Clinical Course, Metabolomic Profiling, and Genetic Findings in Nine Chinese Hyperammonemia Patients, BioMed Research International, 2020, 5690915, https://doi.org/10.1155/2020/5690915.
[16] U. Amstutz, G. Andrey-Zurcher, D. Suciu, R. Jaggi, J. Haberle, C. R. Largiader, Sequence Capture and Next-generation Resequencing of Multiple Tagged Nucleic Acid Samples for Mutation Screening of Urea Cycle Disorders, Clin Chem, Vol. 57, No. 1, 2011, pp. 102-111. https://doi.org/10.1373/clinchem.2010.150706.
[17] G. Zhang, Y. Chen, H. Ju, F. Bei, J. Li, J. Wang, J. Sun, J. Bu, Carbamoyl Phosphate Synthetase 1 Deficiency Diagnosed by Whole Exome Sequencing, J Clin Lab Anal, Vol. 32, No. 2, 2018, e22241. https://doi.org/10.1002/jcla.22241.
[18] C. Yang, C. Zhou, P. Xu, X. Jin, W. Liu, W. Wang, C. Huang, M. Jiang, X. Chen, Newborn Screening and Diagnosis of Inborn Errors of Metabolism: A 5-year Study in an Eastern Chinese Population, Clin Chim Acta, Vol. 502, 2020, pp. 133-138,
https://doi.org/10.1016/j.cca.2019.12.022.
[19] L. Fan, J. Zhao, L. Jiang, L. Xie, J. Ma, X. Li, M. Cheng, Molecular, biochemical, and clinical analyses of five patients with carbamoyl phosphate synthetase 1 deficiency, J Clin Lab Anal., Vol. 34, No. 4, 2020, e23124, https://doi.org/10.1002/jcla.23124
[20] F. Liu, L. S. Bao, R. J. Liang, X. Y. Zhao, Z. Li, Z. F. Du, S. G. Lv, Identification of Rare Variants Causing Urea Cycle Disorders: A Clinical, Genetic, and Biophysical Study, J Cell Mol Med., Vol. 25, No. 8, 2021, pp. 4099-4109,
https://doi.org/10.1111/jcmm.16379.
[21] S. Olga, S. Natalia, B. Igor, C. Alena, Z. Ekaterina, R. Oksana, M. Zhanna, S. Nadezhda, P. Aleksander, A Novel Splice Site Mutation in OTC Gene of a Female with Ornithine Transcarbamylase Deficiency and Her Asymptomatic Mosaic Father, J Genet., Vol. 99, No. 1, 2020, pp. 29, https://doi.org/10.1007/s12041-020-1189-8.
[22] L. Qin, J. Wang, X. Tian, H. Yu, C. Truong, J.J. Mitchell, K.J. Wierenga, W.J. Craigen, V.W. Zhang, L.C. Wong, Detection and Quantification of Mosaic Mutations in Disease Genes by Next-Generation Sequencing, J Mol Diagn., Vol. 18, No. 3, 2016, pp. 446-453. https://doi.org/10.1016/j.jmoldx.2016.01.002.
[23 ] K. J. Park, S. Park, E. Lee, J. H. Park, J. H. Park, H. D. Park, S. Y. Lee, J. W. Kim, A Population-Based Genomic Study of Inherited Metabolic Diseases Detected Through Newborn Screening, Ann Lab Med., Vol. 36, No. 6, 2016, pp. 561-572.
https://doi.org/10.3343/alm.2016.36.6.561.
[24] V. Chongsrisawat, P. Damrongphol, C Ittiwut, R Ittiwut, K Suphapeetiporn, V Shotelersuk, The Phenotypic and Mutational Spectrum of Thai Female Patients with Ornithine Transcarbamylase Deficiency, Gene, Vol. 679, 2018, pp. 377-381.
https://doi.org/10.1016/j.gene.2018.09.026.
[25] E. H. Al Kaabi, A. W. El-Hattab, N-Acetylglutamate Synthase Deficiency: Novel Mutation Associated with Neonatal Presentation and Literature Review of Molecular and Phenotypic Spectra, Mol Genet Metab Rep., Vol. 8, 2016, pp. 94-98. https://doi.org/10.1016/j.ymgmr.2016.08.004.
[26] A. Kenneson, R. H. Singh, Presentation and Management of N-acetylglutamate Synthase Deficiency: A Review of the Literature, Orphanet J Rare Dis., Vol. 15, No. 1, 2020, pp. 279, https://doi.org/10.1186/s13023-020-01560-z.
[27] Y. Lin, H .Gao, B. Lu, S. Zhou, T. Zheng, W. Lin, L. Zhu, M. Jiang, Q. Fu, Citrullinemia type I is Associated with a Novel Splicing Variant, c.773 + 4A > C, a Case Report and Literature Review, BMC Med Genet, Vol. 20, No. 1, 2019, pp. 110. https://doi.org/10.1186/s12881-019-0836-5
[28] C. Pangalos, B. Hagnefelt, K. Lilakos, C. Konialis, First Applications of A Targeted Exome Sequencing Approach in Fetuses with Ultrasound Abnormalities Reveals an Important Fraction of Cases with Associated Gene Defects, PeerJ., Vol. 4, 2016, pp. e1955. https://doi.org/10.7717/peerj.1955.
[29] G. Liu, X. Wei, R. Chen, H. Zhou, X. Li, Y. Sun, S. Xie, N. Zhu Qu, G. Yang, A Novel Mutation of The SLC25A13 Gene in a Chinese Patient with Citrin Deficiency Detected by Target Next-Generation Sequencing, Gene, Vol. 533, No. 2, 2014, pp. 547-553. https://doi.org/10.1016/j.gene.2013.10.021.
[30] T. Togawa, T. Sugiura, K. Ito, T. Endo, K. Aoyama, K. Ohashi, Y. Negishi, T. Kudo, R. Ito, A. Kikuchi, Molecular Genetic Dissection and Neonatal/Infantile Intrahepatic Cholestasis Using Targeted Next-Generation Sequencing, J Pediatr, Vol. 171, 2016, pp. 171-177,
https://doi.org/10.1016/j.jpeds.2016.01.006
[31] B. Seker-Yilmaz, D. Kor, G.Tumgor, S. Ceylaner, N Onenli-Mungan, p.Val452Ile Mutation of the SLC25A13 Gene in a Turkish Patient with Citrin Deficiency, Turk J Pediatr, Vol. 59, No. 3, 2017, pp. 311-314. https://doi.org/10.24953/turkjped.2017.03.012.
[32] A. R. R. Devi, S. M. Naushad, SLC25A13 c.1610_1612delinsAT Mutation in an Indian Patient and Literature Review of 79 Cases of Citrin Deficiency for Genotype-Phenotype Associations, Gene, Vol. 668, 2018, pp. 190-195.
https://doi.org/10.1016/j.gene.2018.05.076.
[33] J. Xu, M. Gao, Y. Lyu, Y. Tang, X.Wei, L. Yang, K. Zhang, Y. Liu, Z. Gai, Analysis of SLC25A13 gene Mutations in Five Infants with Neonatal Intrahepatic Cholestasis Caused by Citrin Deficiency, Zhonghua Yi Xue Yi Chuan Xue Za Zhi, Vol. 35, No. 1, 2018, pp. 34-38,
https://doi.org/10.3760/cma.j.issn.1003-9406.2018.01.007
[34] Z. Luo, Y. Sun, F. Xu, J. Guo, L. Li, Z. Lin, J. Ye, X. Gu, Y. Yu, A Pilot Study of Expanded Newborn Screening for 573 Genes Related to Severe Inherited Disorders in China: Results From 1,127 Newborns, Ann Transl Med., Vol. 8, No. 17, 2020, pp. 1058, https://doi.org/10.21037/atm-20-1147.
[35] R. Zhang, R. Qiang, C. Song, X. Ma, Y. Zhang, F. Li, R. Wang, W. Yu, M. Feng, L. Yang, Spectrum Analysis of Inborn Errors of Metabolism for Xpanded Newborn Screening in a Northwestern Chinese Population, Sci Rep., Vol. 11, No. 1, 2021, pp. 2699. https://doi.org/10.1038/s41598-021-81897-y.
[36] W. Wen, D. Yin, F. Huang, M. Guo, T. Tian, H. Zhu, Y. Yang, NGS in Argininosuccinic Aciduria Detects a Mutation (D145G) Which Drives Alternative Splicing of ASL: a Case Report Study, BMC Med Genet, Vol. 17, 2016, pp. 9, https://doi.org/10.1186/s12881-016-0273-7.
[37] R. D. Ganetzky, E. Bedoukian, M. A. Deardorff, C. Ficicioglu, Argininosuccinic Acid Lyase Deficiency Missed by Newborn Screen, JIMD Rep., Vol. 34, 2017, pp. 43-47. https://doi.org/10.1007/8904_2016_2.
[38] M. Zhao, L. Hou, H. Teng, J. Li, J. Wang, K. Zhang, L. Yang, Whole-Exome Sequencing Identified a Novel Compound Heterozygous Genotype in ASL in a Chinese Han Patient with Argininosuccinate Lyase. Deficiency, Biomed Res Int., Vol. 201, 2019, 3530198. https://doi.org/10.1155/2019/3530198.
[39] Y. Osawa, A. Wada, Y. Ohtsu, K. Yamada, T. Takizawa, Late-onset Argininosuccinic Aciduria Associated with Hyperammonemia Triggered by Influenza Infection in an Adolescent: A Case Report, Mol Genet Metab Rep., Vol. 24, 2020, 100605. https://doi.org/10.1016/j.ymgmr.2020.100605.
[40] H. Yucel, C. S. Kasapkara, M. Akcaboy, E. Aksoy, G. E. Sahin, B. E. Derinkuyu, S. Senel, S. Ceylaner, Recurrent Hepatic Failure and Status Epilepticus: an Uncommon Presentation of Hyperargininemia, Metab Brain Dis., Vol. 33, No. 5, 2018, pp. 1775-1778. https://doi.org/10.1007/s11011-018-0281-8.
[41] L. E. O. Elsayed, I. N. Mohammed, A. A. A. Hamed, M. A. Elseed, M. A. M. Salih, A. Yahia, R. Abubaker, M. Koko, A. S. I. Abd Allah, M. I. Elbashir, Novel Homozygous Missense Mutation in the ARG1 Gene in a Large Sudanese Family, Front Neurol, Vol. 11, 2020, 569996.
https://doi.org/10.3389/fneur.2020.569996.
[42] N. E. Tunali, C. M. Marobbio, N. O. Tiryakioglu, G. Punzi, S. K. Saygili, H. Onal, F. Palmieri, A Novel Mutation in the SLC25A15 Gene in a Turkish Patient with HHH Syndrome: Functional Analysis of the Mutant Protein, Mol Genet Metab., Vol. 112, No. 1, 2014, pp. 25-29, https://doi.org/10.1016/j.ymgme.2014.03.002.
[43] T. Silfverberg, F. Sahlander, M. Enlund, M. Oscarson, M. Hardstedt, Late Onset Hyperornithinemia-Hyperammonemia-Homocitrullinuria Syndrome - How Web Searching by The Family Solved Unexplained Unconsciousness: A Case Report, J Med Case Rep., Vol. 12, No. 1, 2018, pp. 274.
https://doi.org/10.1186/s13256-018-1794-9.
[44] H. Hengel, R. Buchert, M. Sturm, T. B. Haack, Y. Schelling, M. Mahajnah, R. Sharkia, A. Azem, G. Balousha, Z. Ghanem, First-line exome sequencing in Palestinian and Israeli Arabs with neurological disorders is efficient and facilitates disease gene discovery, Eur J Hum Genet, Vol. 28, No. 8, 2020, pp. 1034-1043. https://doi.org/10.1038/s41431-020-0609-9.