Pham Thanh Luu, Tran Thi Hoang Yen, Hoang Thi Thanh Thuy, Tu Thi Cam Loan

Main Article Content

Abstract

Cyanobacterial blooms in eutrophic waters pose serious threats to public health, water quality, and ecological management worldwide. Mitigation of the problem is essential to maintain stainable development. In this study, the effectiveness of local soils collected from the Tri An Reservoir (TAR) lakeside in the removal of cyanobacteria Microcystis aeruginosa was investigated. The organic matter content and clay mineral were characterized and used for the experiment. Cell density, percentage of growth inhibition, and changes in cell morphology were observed and used at endpoints of the experiment. The three soil samples named TA1, TA2, and TA3 were characterized with a high proportion of illit, montmorillonit, and kaolinite, respectively. Our results indicated that different soil compositions generated different inhibition on the growth of M. aeruginosa. Exposure to the soil high in kaolinite (52.1%) at a dose of 500 mg/L completely inhibited M. Aeruginosa growth, while the soil contained a high amount of montmorillonit (42.3%) inhibited only 38.4% of the growth of M. aeruginosa. The half-maximal effective concentration (EC50) values of the TA1, TA2, and TA3 soil samples were 351.6 mg/L, 668.9 mg/L, 201.3 mg/L, respectively. Our results suggested that soil rich in kaolinite can be used to prevent harmful cyanobacterial blooms in inland waters.

Keywords: Clays; control cyanobacteria; growth inhibition, natural soils.

References

[1] J. Heisler, P. M. Glibert, J. M. Burkholder, D. M Anderson, W. Cochlan, W. C. Dennison, M. Suddleson, Eutrophication and Harmful Algal Blooms: A Scientific Consensus, Harmful Algae, Vol. 8, 2008, pp. 3-13, http://dx.doi.org/10.1016/j.hal.2008.08.006.
[2] S. Kosten, V. L. M. Huszar, E. Bécares, L. S. Costa, E. van Donk, L. A. Hansson, M. Scheffer, Warmer Climates Boost Cyanobacterial Dominance in Shallow Lakes, Glob Change Biol, Vol. 18, 2012, pp. 118-126,
http://dx.doi.org/10.1111/j.1365-2486.2011.02488.x.
[3] T. L. Pham, T. S. Dao, K. Shimizu, D. H. L. Chi, M. Utsumi, Isolation and Characterization of Microcystin-producing Cyanobacteria from Dau Tieng Reservoir, Vietnam, Nova Hedwigia, Vol. 101, 2015, pp. 3-20,
http://dx.doi.org/10.1127/nova_hedwigia/2014/0243.
[4] T. L. Pham, M. Utsumi, An Overview of the Accumulation of Microcystins in Aquatic Ecosystems, J Environ Manage, Vol. 213, 2018, pp. 520-529. https://doi.org/10.1016/j.jenvman.2018.01.077.
[5] M. Smutná, P. Babica, S. Jarque, K. Hilscherová, B. Maršálek, M. Haeba, L. Bláha, Acute, Chronic and Reproductive Toxicity of Complex Cyanobacterial Blooms in Daphnia magna and the Role of Microcystins, Toxicon, Vol. 79, 2014, pp. 11-18, http://dx.doi.org/10.1016/j.toxicon.2013.12.009.
[6] J. M. O’Neil, T. W. Davis, M. A. Burford, C. J. Gobler, The Rise of Harmful Cyanobacteria Blooms: The Potential Roles of Eutrophication and Climate Change, Harmful Algae, Vol. 14, 2012, pp. 313-334, http://dx.doi.org/10.1016/j.hal.2011.10.027.
[7] M. J. Harke, M. M. Steffen, C. J. Gobler, T. G. Otten, S. W. Wilhelm, S. A. Wood, H. W. Paerl, A Review of the Global Ecology, Genomics, and Biogeography of the Toxic Cyanobacterium, Microcystis spp, Harmful Algae, Vol. 54, 2016, pp. 4-20, http://dx.doi.org/10.1016/j.hal.2015.12.007.
[8] T. T. Duong, S. Jähnichen, T. Le, C. Ho, T. Hoang, T. Nguyen, T. Vu, D. K. Dang, The Occurrence of Cyanobacteria and Microcystins in the Hoan Kiem Lake and the Nui Coc Reservoir (North Vietnam), Enviro Earth Sci, Vol. 71, No. 5, 2014, pp. 2419-2427, https://doi.org/10.1007/s12665-013-2642-2.
[9] T. S. Dao, G. Cronberg, J. Nimptsch, L. C. D. Hong, C. Wiegand, Toxic Cyanobacteria from Tri An Reservoir, Vietnam, Nova Hedwigia, Vol. 90, No. 3-4, 2010, pp. 433-448, https://doi.org/10.1127/0029-5035/2010/0090-0433.
[10] T. S. Dao, J. Nimptsch, C. Wiegand, Dynamics of Cyanobacteria and Cyanobacterial Toxins and Their Correlation with Environmental Parameters in Tri An Reservoir, Vietnam, J Water Health, Vol. 14, 2016, pp. 669-712, https://doi.org/10.2166/wh.2016.257.
[11] T. T. L. Nguyen, G. Cronberg, H. Annadotter, J. Larsen, Planktic Cyanobacteria from Freshwater Localities in Thuathien-Hue Province, Vietnam II. Algal Biomass and Microcystin Production, Nova Hedwigia, Vol. 85, 2007, pp. 35-49.
[12] T. T. Duong, T. S. Le, T. T. Tran, T. K. Nguyen, C. T. Ho, T. H. Dao, T. P. Le, H. C. Nguyen, D. K. Dang, T. T. Le, et al., Inhibition Effect of Engineered Silver Nanoparticles to Bloom Forming Cyanobacteria, Adv Nat Sci, Vol. 7, 2016, pp. 1-7, https://doi.org/10.1088/2043-6262/7/3/035018.
[13] H. W. Paerl, Controlling Cyanobacterial Harmful Blooms in Freshwater Ecosystems, Microb Biotechno, Vol. 10, 2017, pp. 1106-1110, https://doi.org/10.1111/1751-7915.12725.
[14] R. Sun, P. Sun, J. Zhang, S. Esquivel-Elizondo, Y. Wu, Microorganisms-based Methods for Harmful Algal Blooms Control: A Review, Bioresour Technol, Vol. 248, 2018, pp. 12-20, https://doi.org/10.1016/j.biortech.2017.07.175.
[15] J. J. G. Rodríguez, A. A. Villalón, A. L. Rivera, V. A. Fontalba, V. U. Jofré, A Critical Review on Control Methods for Harmful Algal Blooms, Rev Aquacult, Vol. 11, 2019, pp. 661-684, https://doi.org/10.1111/raq.12251.
[16] G. Pan, M. M. Zhang, H. Chen, H. Zou, H. Yan, Removal of Cyanobacterial Blooms in Taihu Lake Using Local Soils. I. Equilibrium and Kinetic Screening on the Flocculation of Microcystis aeruginosa Using Commercially Available Clays and Minerals, Environ Pollut, Vol. 141, 2006, pp. 195-200, https://doi.org/10.1016/j.envpol.2005.08.041.
[17] M. Y. Han, W. Kim, A Theoretical Consideration of Algae Removal with Clays, Microchem J, Vol. 68, 2001, pp. 157-161, https://doi.org/10.1016/S0026-265X(00)00142-9.
[18] R. K. Enang, B. P. K. Yerima, G. K. Kome, E. Van Ranst, Assessing the Effectiveness of the Walkley-Black Method for Soil Organic Carbon Determination in Tephra Soils of Cameroon, Commun Soil Sci Plant Anal, Vol. 49, 2018, pp. 2379-2386, https://doi.org/10.1080/00103624.2018.1510948.
[19] C. S. Marello, C. Scavia, M. Setti, Clay Mineral Characterization Through the Methylene Blue Test: Comparison with other Experimental Techniques and Applications of the Method, Can Geotech J, Vol. 41, 2004, pp. 1168-1178,
https://doi.org/10.1139/t04-060.
[20] J. Komárek, K. Anagnostidis, Cyanoprokaryota 1, Teil: Chroococcales, 1999, pp. 548.
[21] J. Kotai, Instructions for Preparation of Modified Nutrient Solution Z8 for Algae, Norwegian Institute for Water research, Oslo B-11/69, 1972, pp. 1-5.
[22] F. Ribeiro, J. A. G. Urrea, K. Jurkschat, A. Crossley, M. Hassellöv, C. Taylor, S. Loureiro, Silver Nanoparticles and Silver Nitrate Induce High Toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio, Sci Total Environ, Vol. 466-467, 2014, pp. 232-241, https://doi.org/10.1016/j.scitotenv.2013.06.101.
[23] Y. Z. Ming, Z. J. Zhong, M. X. Nian, Application of Clays to Removal of Red Tide Organisms II, Coagulation of Different Species of Red Tide Organisms with Montmorillonite and Effect of Clay Pretreatment, Chin J Oceanol Limnol, Vol. 12, 1994, pp. 316-324, https://doi.org/10.1007/BF02850491.
[24] H. Zou, G. Pan, H. Chen, X. Yuan, Removal of Cyanobacterial Blooms in Taihu Lake Using Local Soils II. Effective Removal of Microcystis aeruginosa Using Local Soils and Sediments Modified by Chitosan, Environ Pollut, Vol. 141, 2006, pp. 201-205, https://doi.org/10.1016/j.envpol.2005.08.042.
[25] M. R. Sengco, A. Li, K. Tugend, D. Kulis, D. M. Anderson, Removal of Red- and Brown-tide Cells Using Clay Flocculation. I. Laboratory Culture Experiments with Gymnodinium breve and Aureococcus anophagefferens, Mar Ecol Prog Ser, Vol. 210, 2001, pp. 41-53, https://doi.org/10.3354/meps210041.
[26] R. H. Pierce, M. S. Henry, C. J. Higham, P. Blum, M. R. Sengco, D. M. Anderson, Removal of Harmful Algal Cells (Karenia brevis) and Toxins from Seawater Culture by Clay Flocculation, Harmful Algae, Vol. 3, 2004, pp. 141-148,
https://doi.org/10.1016/j.hal.2003.09.003.
[27] F. V. Oosterhout, M. Lürling, The Effect of Phosphorus Binding Clay (Phoslock®) in Mitigating Cyanobacterial Nuisance: A Laboratory Study on the EFfects on Water Quality Variables and Plankton, Hydrobiologia, Vol. 710, 2013, pp. 265-277, https://doi.org/10.1007/s10750-012-1206-x.
[28] Z. Yu, X. Song, X. Cao, Y. Liu, Mitigation of Harmful Algal Blooms Using Modified Clays: Theory, Mechanisms, and Applications, Harmful Algae, Vol. 69, 2017, pp. 48-64, https://doi.org/10.1016/j.hal.2017.09.004.
[29] R. E. Martinez, O. S. Pokrovsky, J. Schott, E. H. Oelkers, Surface Charge and Zeta-potential of Metabolically Active and Dead Cyanobacteria, J. Colloid Interface Sci, Vol. 323, 2008, pp. 317-325, https://doi.org/10.1016/j.jcis.2008.04.041.
[30] G. Pan, X. Miao, L. Bi, H. Zhang, L. Wang, L. Wang, Z. Wang, J. Chen, J. Ali, M. Pan, J. Zhang, B. Yue, T. Lyu, Modified Local Soil (MLS) Technology for Harmful Algal Bloom Control, Sediment Remediation, and Ecological Restoration, Water, Vol. 11, 2019, pp. 1123, https://doi.org/10.3390/w11061123.