Lam Hoang Hao, Dinh Tran Trong Hieu, Tran Hoang Long, Dang Van Hoa, Tran Thanh Danh, Tran Van Man, Le Quang Luan, Huynh Truc Phuong, Pham Thi Thu Hong, Tran Duy Tap

Main Article Content

Abstract

The extensive ultrasmall-angle X-ray scattering measurements are performed in order to investigate the changes of lamellar grains of poly(styrenesulfonic acid)-grafted poly(ethylene-co-tetrafluoroethylene) polymer electrolyte membranes (ETFE-PEMs) that occur during the alteration of grafting degree (GD) under dry and immersed conditions. The lamellar grains of three series of the samples (polystyrene-grafted ETFE films and dry and hydrated ETFE-PEMs) are formed during the grafting process and develop independently with the change of the lamellar stacks. Interestingly, three series of samples exhibit a very similar trend of lamellar grain at any GD and a significant amount of graft chains is observed directly in the region between the grains (GD £ 59%) and outside of the grain network structures (GD > 59%). This observation indicates: i) The formation of the lamellar grains; ii) The rapid changes in characteristic sizes of the lamellar grains compared with the lamellar stacks; and iii) The newly generated phases consisting of only the graft materials. These findings explain why the lamellar grains and the graft chains play an important role in the higher proton conductivity and compatible tensile strengths of the membranes, compared with Nafion, at the immersed and severe operating conditions.


 
Keywords: Fuel cells, membranes, polyelectrolytes, lamellar, X-ray

References

[1] B. Smitha, S. Sridhar, A. A. Khan, Solid Polymer Electrolyte Membranes for Fuel Cell Applications a Review, J. Membr, Sci, Vol. 259, 2005, pp. 10-26, https://doi.org/10.1016/j.memsci.2005.01.035.
[2] Y. Liu, J. L. Horan, G. J. Schlichting, B. R. Carire, M. W. Liberatore, S. J. Hamrock, G. M. Haugen,
M. A. Yandrasits, S. Seifert, A. M. Herring, A Small-angle X-ray Scattering Study of the Development of Morphology in Films Formed from the 3M Perfluorinated Sulfonic Acid Ionomer, Macromolecules, Vol. 45, 2012, pp. 7495-7503, https://doi.org/10.1021/ma300926e.
[3] X. C. Chen, D. T. Wong, S. Yakovlev, K. M. Beers, K. H. Downing, N. P. Balsara, Effect of Morphology of Nanoscale Hydrated Channels on Proton Conductivity in Block Copolymer Electrolyte Membranes, Nano Lett, Vol. 14, 2014, pp. 4058-4064, https://doi.org/10.1021/nl501537p.
[4] Q. Berrod, S. Lyonnard, A. Guillermo, J. Ollivier, B. Frick, A. Manseri, B. Améduri, G. Gébel, Nanostructure and Transport Properties of Proton Conducting Self-Assembled Perfluorinated Surfactants: A Bottom-Up Approach toward PFSA Fuel Cell Membranes, Macromolecules, Vol. 48, 2015, pp. 6166-6176,
https://doi.org/10.1021/acs.macromol.5b00770.
[5] T. D. Tap, S. Sawada, S. Hasegawa, Y. Katsumura, Y. Maekawa, Poly(ethylene-co-tetrafluoroethylene) (ETFE)-Based Graft-Type Polymer Electrolyte Membranes with Different Ion Exchange Capacities: Relative Humidity Dependence for Fuel Cell Applications, J. Membr, Sci, Vol. 447, 2013, pp. 19-25, https://doi.org/10.1016/j.memsci.2013.07.041.
[6] T. D. Tap, D. D. Khiem, L. L. Nguyen, N. Q. Hien, L. Q. Luan, P. B. Thang, S. Sawada, S. Hasegawa,
Y. Maekawa, Humidity and Temperature Effects on Mechanical Properties and Conductivity of
Graft-type Polymer Electrolyte Membrane, Radiat, Phys, Chem, Vol. 51, 2018, pp. 186-191,
https://doi.org/10.1016/j.radphyschem.2018.06.033.
[7] T. D. Tap, S. Sawada, S. Hasegawa, K. Yoshimura, Y. Oba, M. Ohnuma, Y. Katsumura, Y. Maekawa, Hierarchical Structure-property Relationships in Graft-type Fluorinated Polymer Electrolyte Membranes Using Small - and Ultrasmall-Angle X‑ray Scattering Analysis, Macromolecules, Vol. 47, 2014, pp. 2373-2383, https://doi.org/10.1021/ma500111x.
[8] T. D. Tap, L. L. Nguyen, Y. Zhao, S. Hasegawa, S. I. Sawada, N.Q. Hung, Y. Maekawa, SAXS Investigation on Morphological Change in Lamellar Structures During Propagation Steps of Graft-type Polymer Electrolyte Membranes for Fuel Cell Applications, Macromol, Chem, Phys, Vol. 221, 2020, pp. 1900325, https://doi.org/10.1002/macp.201900325.
[9] T. D. Tap, L. L. Nguyen, S. Hasegawa, S. I. Sawada, L. Q. Luan, Y. Maekawa, Internal and Interfacial Structure Analysis of Graft-type Fluorinated Polymer Electrolyte Membranes by Small-angle X-ray Scattering in the High-q Range, J. Appl, Polym, Sci, Vol. 137, 2020, pp. 49029, https://doi.org/10.1002/app.49029.
[10] G. R. Strobl, M. Schneider, Direct Evaluation of the Electron Density Correlation Function of Partially Crystalline Polymers, J. Polym, Sci., Polym, Phys, Ed, Vol. 18, 1980, pp. 1343-1359, https://doi.org/10.1002/pol.1980.180180614.
[11] C. S. Cruz, N. Stribeck, H. G. Zachmann, F. J. B. Calleja, Novel Aspects in the Structure of Poly(ethylene terephthalate) as Revealed by Means of Small Angle X-Ray Scattering, Macromolecules, Vol. 24, 1991, pp. 5980-5990, https://doi.org/10.1021/ma00022a013.
[12] P. Debye, A. M. Bueche, Scattering by an Inhomogeneous Solid, J. Appl, Phys, Vol. 20, 1949, pp. 518-525, https://doi.org/10.1063/1.1698419.
[13] P. Debye, H. R. Anderson, J. H. Brumberger, Scattering by an Inhomogeneous Solid, II, The Correlation Function and Its Application, J. Appl, Phys, Vol. 28, 1957, pp. 679-683, https://doi.org/10.1063/1.1722830.
[14] G. Porod, Die Röntgenkleinwinkelstreuung von Dichtgepackten Kolloiden Systemen, Kolloi-Zeitschrift, Vol. 124, 1951, pp. 83-114, https://doi.org/10.1007/BF01512792.
[15] G. Porod, Die Röntgenkleinwinkelstreuung von Dichtgepackten Kolloiden Systemen, Kolloi-Zeitschrift, Vol. 125, 1952, pp. 51-57, https://doi.org/10.1007/BF01519615.
[16] G. Porod, Die Röntgenkleinwinkelstreuung von Dichtgepackten Kolloiden Systemen, II, Teil, Kolloi-Zeitschrift, Vol. 125, 1952, pp. 108-122, https://doi.org/10.1007/BF01526289.
[17] C. G. Vonk, Investigation of Non-Ideal Two-Phase Polymer Structures by Small-Angle X-Ray Scattering, J. Appl, Crystallogr, Vol. 6, 1973, pp. 81-86, https://doi.org/10.1107/S0021889873008204.
[18] Y. Zhao, K. Yoshimura, H. Shishitani, S. Yamaguchi, H. Tanaka, S. Koizumi, N. Szekely, A. Radulescu, D. Richter, Y. Maekawa, Imidazolium-Based Anion Exchange Membranes for Alkaline Anion Fuel Cells: Elucidation of the Morphology and the Interplay Between the Morphology and Properties, Soft Matter, Vol. 12, 2016, pp. 1567-1578, https://doi.org/10.1039/C5SM02724A.