Nguyen Huu Tho, Pham Hong Cam

Main Article Content

Abstract

The geometries, stabilities, and electronic properties of vanadium-doped germanium clusters GenV0/+ (n=2-8) were systematically investigated using density functional theory (DFT) at the PBE level and the 6-311+G(d) basis set. The results show that the geometries of
the neutral and cationic structures of the clusters are significantly different at n = 6 or 7 structures. The ground state of neutral clusters is a doublet, except Ge2V (quartet) while that of cationic clusters is a triplet, except Ge8V- (singlet). The average binding energy values increase with the increasing cluster size, and these values are more stable for the cationic clusters than for the neutral clusters at the same size. Furthermore, the calculated values of fragmentation energy, second-order energy difference, HOMO-LUMO gap, and adiabatic ionization potential suggest that the neutral clusters are higher stability at n = 2, 5, 8 structures and the cation clusters are more stable at n = 2, 3, 5 and 6 structures.

Keywords: PBE, germanium, binding energy, cluster.

References

[1] P. W. Deutsch, L. A. Curtiss, J. P. Blaudeau, Binding Energies of Germanium Clusters, Gen (n=2−5), Chemical Physics Letters, Vol. 270, No. 5, 1997, pp. 413-418, https://doi.org/10.1016/S0009-2614(97)00398-9.
[2] P. W. Deutsch, L. A. Curtiss, J. P. Blaudeau, Electron Affinities of Germanium Anion Clusters, Gen− (n=2–5), Chemical Physics Letters, Vol. 344, No. 1, 2001, pp. 101-106, https://doi.org/10.1016/S0009-2614(01)00734-5.
[3] X. J. Deng, X. Y. Kong, X. L. Xu, H. G. Xu, W. J. Zheng, Structural and Bonding Properties of Small TiGen− (n=2–6) Clusters: Photoelectron Spectroscopy and Density Functional Calculations, RSC Advances, Vol. 4, No. 49, 2014, pp. 25963-25968, https://doi.org/10.1039/C4RA02897J.
[4] X. J. Deng, X. Y. Kong, H. G. Xu, X. L. Xu, G. Feng, W. J. Zheng, Photoelectron Spectroscopy and Density Functional Calculations of VGen– (n = 3–12) Clusters, The Journal of Physical Chemistry C, Vol. 119, No. 20, 2015, pp. 11048-11055, https://doi.org/10.1021/jp511694c.
[5] X. J. Deng, X. Y. Kong, X. L. Xu, H. G. Xu, W. J. Zheng, Structural and Magnetic Properties of CoGen− (n=2–11) Clusters: Photoelectron Spectroscopy and Density Functional Calculations, ChemPhysChem, Vol. 15, No. 18, 2014, pp. 3987-3993, https://doi.org/10.1002/cphc.201402615.
[6] N. Kapila, V. K. Jindal, H. Sharma, Structural, Electronic and Magnetic Properties of Mn, Co, Ni in Gen for (n=1–13), Physica B: Condensed Matter, Vol. 406, No. 24, 2011, pp. 4612-4619, https://doi.org/10.1016/j.physb.2011.09.038.
[7] S. P. Shi, Y. L. Liu, B. L. Deng, C. Y. Zhang, G. Jiang, Density Functional Theory Study of the Geometrical and Electronic Structures of GenV(0,±1)(n=1–9) Clusters, International Journal of Modern Physics B, Vol. 31, No. 5, 2016, pp. 1750022, https://doi.org/10.1142/S0217979217500229.
[8] C. Siouani, S. Mahtout, S. Safer, F. Rabilloud, Structure, Stability and Electronic and Magnetic Properties of VGen (n = 1–19) Clusters, The Journal of Physical Chemistry A, Vol. 121, No. 18, 2017, pp. 35403554,
https://doi.org/10.1021/acs.jpca.7b00881.
[9] N. Huu Tho, T. T. Tu, The Geometries, Stabilities and Electronic Property of Cationic Vanadium Doped Germanium Cluster GenV+ (n=9-13) from Density Functional Theory, VNU Journal of Science: Natural Sciences and Technology, Vol. 35, No. 4, 2019, pp. 72-80, https://doi.org/10.25073/2588-1140/vnunst.4946.
[10] Perdew, Burke, Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, Vol. 77, No. 18, 1996, pp. 3865-3868, https://doi.org/10.1103/PhysRevLett.77.3865.
[11] S. Djaadi, K. Eddine Aiadi, S. Mahtout, First Principles Study of Structural, Electronic and Magnetic Properties of SnGen(0, ±1) (n =1-17) Clusters, Journal of Semiconductors, Vol. 39, No. 4, 2018, pp. 42001, https://doi.org/10.1088/1674-4926/39/4/042001.
[12] J. J. BelBruno, A. Burnin, Small Germanium Sulfide Clusters: Mass Spectrometry and Density Functional Calculations, Physical Chemistry Chemical Physics, Vol. 12, No. 30, 2010, pp. 8557-8563,
https://doi.org/10.1039/c003704d.
[13] W. Qin et al., Structures and Stability of Metal-doped GenM (n = 9, 10) Clusters, AIP Advances, Vol. 5, No. 6, 2015, pp. 67159, https://doi.org/10.1063/1.4923316.
[14] C. Siouani, S. Mahtout, F. Rabilloud, Structure, Stability, and Electronic Properties of Niobium-germanium and Tantalum-germanium Vlusters, Journal of Molecular Modeling, Vol. 25, No. 5, 2019, pp. 113, https://doi.org/10.1007/s00894-019-3988-5.
[15] S. Bulusu, S. Yoo, X. C. Zeng, Search for Global Minimum Geometries for Medium Sized Germanium Clusters: Ge12 - Ge20, The Journal of Chemical Physics, Vol. 122, No. 16, 2005, pp. 164305, https://doi.org/10.1063/1.1883647.
[16] R. L. W. Hehre, P. V. R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, New York: Wiley, 1986.
[17] M. J. Frisch et al., Gaussian 09 Revision C.01, Gaussian Inc, Wallingford CT, Computer Program, 2010.
[18] V. T. Tran, M. T. Nguyen, Q. T. Tran, Computational Investigation of the Geometrical and Electronic Structures of VGen–/0 (n = 1-4) Clusters by Density Functional Theory and Multiconfigurational CASSCF/CASPT2 Method, The Journal of Physical Chemistry A, Vol. 121, No. 40, 2017, pp. 7787-7796, https://doi.org/ 10.1021/acs.jpca.7b08351.
[19] F. Jensen, An Introduction to Computational Chemistry, 3rd Edition, Wiley, 2017.
[20] Y. Zhao, D. G. Truhlar, The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-class Functionals and 12 other Function, Theoretical Chemistry Accounts, Vol. 120, No. 1-3, 2008, pp. 215-241, https://doi.org/10.1007/s00214-007-0310-x.
[21] L. N. Pham, M. T. Nguyen, Insights into Geometric and Electronic Structures of VGe3-/0 Clusters from Anion Photoelectron Spectrum Assignment, Journal of Physical Chemistry A, Vol. 121, No. 37, 2017, pp. 6949-6956, https://doi.org/10.1021/acs.jpca.7b07459.