Tran Duc Khanh, Vu Ha Giang, Trinh Thi Phong Huong, Vu Thanh Luan, Nguyen Thi Lan, Dao Thi Thu Thuy, Le Tuan Anh, Pham Thanh Dong, Nguyen Thi Minh Chau, Le Thi Hoang Oanh, Hoang Van Ha

Main Article Content

Abstract

Titanium dioxide (TiO2) is widely applied in the field of pollution treatment due to its good catalytic properties and being an environmentally friendly material. In this study, TiO2 nanotubes were prepared from commercial TiO2 particles. The effects of carboxymethyl cellulose (CMC) and liquid glass (sodium silicate) on catalyst activity and catalyst adhesion on quartz tubes were investigated. Transmission microscopy (TEM), scanning microscope (SEM), X-ray diffraction (XRD), X-ray energy dispersive spectroscopy, Fourier transform infrared spectroscopy (FT-IR) were used for the characterization of the catalyst. In this study, the ethanol degradation ability of the catalyst, which was added with 0; 0.5; 1, and 1.5% liquid glass and calcined at 400 and 500oC, was determined. TiO2 nanotubes after preparation have a uniform diameter from 10-12 nm and an average length of about 150nm, specific surface area increases markedly compared to commercial granules (nearly 15 times). The results showed that CMC plays an important role in the thickness and distribution of TiO2 on the quartz surface. Liquid glass significantly affects the ethanol degradation efficiency.

Keywords: Scientific publications, data science, data analysis.

References

[1] Z. Shayegan, C.-S. Lee, F. Haghighat, TiO2 photocatalyst for removal of volatile organic compounds in gas phase – A review TiO2 photocatalyst for removal of volatile organic compounds in gas phase – A review TiO 2 photocatalyst for removal of volatile organic compounds in gas phase – A revi, Chem. Eng. J. Z. Chem. Eng. J. (2017). doi:10.1016/j.cej.2017.09.153.
[2] X. Chen, S.S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, Chem. Rev. 107 (2007) 2891–2959. doi:10.1021/cr0500535.
[3] A. Di Paola, M. Bellardita, L. Palmisano, Brookite, the least known TiO2 photocatalyst, Catalysts. 3 (2013) 36–73. doi:10.3390/catal3010036.
[4] R.R. Guimaraes, A.L.A. Parussulo, K. Araki, Impact of nanoparticles preparation method on the synergic effect in anatase/rutile mixtures, Electrochim. Acta. 222 (2016) 1378–1386. doi:10.1016/j.electacta.2016.11.114.
[5] D. V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes, J. Mater. Chem. 14 (2004) 3370. doi:10.1039/b406378c.
[6] F. Song, Y. Zhao, Q. Zhong, Adsorption of carbon dioxide on amine-modified TiO2 nanotubes, J. Environ. Sci. 25 (2013) 554–560. doi:10.1016/S1001-0742(12)60097-7.
[7] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of Titanium Oxide Nanotube, Langmuir. 14 (1998) 3160–3163. doi:10.1021/la9713816.
[8] K. Rajeshwar, M.E. Osugi, W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, P. Kajitvichyanukul, R. Krishnan-Ayer, Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media, J. Photochem. Photobiol. C Photochem. Rev. 9 (2008) 171–192. doi:10.1016/J.JPHOTOCHEMREV.2008.09.001.
[9] V. Likodimos, T. Stergiopoulos, P. Falaras, J. Kunze, P. Schmuki, Phase Composition, Size, Orientation, and Antenna Effects of Self-Assembled Anodized Titania Nanotube Arrays: A Polarized Micro-Raman Investigation, J. Phys. Chem. C. 112 (2008) 12687–12696. doi:10.1021/jp8027462.
[10] N. Liu, X. Chen, J. Zhang, J.W. Schwank, A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications, Catal. Today. 225 (2014) 34–51. doi:10.1016/j.cattod.2013.10.090.
[11] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Titania Nanotubes Prepared by Chemical Processing, Adv. Mater. 11 (1999) 1307–1311. doi:10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H.
[12] M. Yadav, K.Y. Rhee, I.H. Jung, S.J. Park, Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film, Cellulose. 20 (2013) 687–698. doi:10.1007/s10570-012-9855-5.
[13] A.A. Oun, J.W. Rhim, Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films, Carbohydr. Polym. 127 (2015) 101–109. doi:10.1016/j.carbpol.2015.03.073.
[14] N.D. Abazović, M.I. Čomor, M.D. Dramićanin, D.J. Jovanović, S.P. Ahrenkiel, J.M. Nedeljković, Photoluminescence of Anatase and Rutile TiO 2 Particles †, J. Phys. Chem. B. 110 (2006) 25366–25370. doi:10.1021/jp064454f.
[15] S. Mugundan, B. Rajamannan, G. Viruthagiri, N. Shanmugam, R. Gobi, P. Praveen, Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique, Appl. Nanosci. 5 (2015) 449–456. doi:10.1007/s13204-014-0337-y.
[16] H.M. Nguyễn, H.G. Vũ, V.P. Phạm, T.H.O. Lê, V.-H. Hoang, Nghiên cứu tổng hợp vật liệu ống nano TiO2, phân tích đặc tính và khả năng xử lý chất hữu cơ bay hơi, VNU J. Sci. Nat. Sci. Technol. 34 (2018) 83–90. doi:10.25073/2588-1140/vnunst.4744.
[17] T.T.T. Hoang, Le Thi Yen; Doan, Van Thuan; Nguyen Thi Hanh; Nguyen Hoang Thao Vy; Tran, My Hang; Hoang, Van Ha; Pham, Thanh Dong; Sharma, Ajit Kumar; Nguyen, Synthesis of N and S co-doped TiO2 nanotubes for advanced photocatalytic degradation of volatile organic compounds in gas phase, J. Chem. Technol. Biotechnol. (2020). https://ejournal3.undip.ac.id/index.php/jamt/article/view/5101.