Truong Thao, Vuong Truong Xuan, Hoang Manh Hung, Nguyen Sy Duong, Nguyen Ngoc An

Main Article Content

Abstract

In this study, the lemongrass essential oil distillation residue (LR) was the first pyrolyzed under air-controlled conditions at 500 °C for 1 hour (B500), followed by activation through alkali treatment under ultrasonic conditions at 70-80 °C for 3 hours (B5KOH). B5KOH displayed a porous architecture with heightened surface area, 79.90 m2/g, twice the specific surface of B500 material; and carbon content elevated to 87.99%. The material contained some organic functional groups such as C=O, C=C, and C-O-C. The B5KOH sample exhibited the most effective MB uptake at pH 8, achieving adsorption equilibrium within a brief timeframe of approximately 30 – 50 minutes across a concentration spectrum of MB ranging from 5 to 500 mg/L at material loadings of 1-10 g/L, qm is 74.44 mg/g. The material demonstrated substantial recyclability, maintaining nearly consistent adsorption efficiency through the fifth cycle (decreasing marginally from 96.69% to 95.13%). Experimental adsorption conformed to the Freundlich isotherm adsorption model and proceeds via a second-order kinetic model. The adsorption phenomenon was spontaneous, primarily driven by physical interactions between the B5KOH and MB molecules. Overall, lemongrass-derived pyrochar exhibited considerable promise as an adsorbent material for mitigating MB pollution.

Keywords: Pyrochar, lemongrass, adsorption, methylene blue.

References

[1] A. K. Behera, K. P. Shadangi, P. K. Sarangi, Effcient Removal of Rhodamine B Dye using Biochar as an Adsorbent: Study the Performance, Kinetics, Thermodynamics, Adsorption Isotherms and its Reusability, Chemosphere, Vol. 354, 2024, pp. e141702, https://doi.org/10.1016/j.chemosphere.2024.141702.
[2] P. O. Oladoye, T. O. Ajiboye, E. O. Omotola, O. J. Oyewola, Methylene Blue Dye: Toxicity and Potential Elimination Technlogy from Wastewater, Results in Engineering, Vol. 16, 2022, pp. e100678, https://doi.org/10.1016/j.rineng.2022.100678.
[3] M. M. Mabel, T. R. Sundararaman, N. Parthasarathy, J. Rajkumar, Chitin Beads from Peneaus sp. Shells as a Biosorbent for Methylene Blue Dye Removal, Pol. J. Environ. Stud, Vol. 28, No. 4, 2019, pp. 2253-2259,
https://doi.org/10.15244/pjoes/90359.
[4] A. K. Moorthy, B. G. Rathi, S. P. Shukla, K. Kumar, V. S. Bharti, Acute Toxicity of Textile Dye Methylene Blue on Growth and Metabolism of Selected Freshwater Microalgae, Environ, Toxicol. Pharmacol., Vol. 82, 2021, pp. e103552, https://doi.org/10.1016/j.etap.2020.103552.
[5] S. M. Peneyra, K. Lerpiriyapong, E. R. Riedel, N. S. Lipman, C. Lieggi, Impact of Pronase, Sodium Thiosulfate, and Methylene Blue Combinations on Development and Survival of Sodium Hypochlorite Surface-Disinfected Zebrafish (Danio rerio) Embryos, Zebrafish, Vol. 17, No. 5, 2020, pp. 342-353, https://doi.org/10.1089/zeb.2020.1917.
[6] A. M. McDonnell, I. Rybak, M. Wadleigh, D.C. Fisher, Suspected Serotonin Syndrome in a Patient Being Treated with Methylene Blue for if Osfamide Encephalopathy, J. Oncol. Pharm. Pract., Vol. 18, No. 4, 2012, pp. 436-439, https://doi.org/ 10.1177/1078155211433231.
[7] R. R. Ramsay, C. Dunford, C. K. Gillman, Methylene Blue and Serotonin Toxicity: Inhibition of Monoamine Oxidase A (MAO A) Confirms a Theoretical Prediction, Br. J. Pharmacol., Vol. 152, No. 6, 2007, pp. 946-951,
https://doi.org/10.1038/sj.bjp.0707430.
[8] E. Santoso, R. Ediati, Y. Kusumawati, H. Bahruji, D. O. Sulistiono, D. Prasetyoko, Review on Recent Advances of Carbon Based Adsorbent for Methylene Blue Removal from Waste Water, Materials today Chemistry, Vol. 16, 2020, pp. e100233. doi:10.1016/j.mtchem.2019.100233.
[9] Z. Liu, Z. Wang, H. Chen, T. Cai, Z. Liu, Hydrochar and Pyrochar for Sorption of Pollutants in Wastewater and Exhaust Gas: A Critical Review, Environmental Pollution, Vol. 268, 2021, pp. e115910, https://doi.org/10.1016/j.envpol.2020.115910.
[10] M. Benadjemia, L. Milière, L. Reinert, N. benderdouche, L. Duclaux, Preparation, Characterization and Methylene Blue Adsorption of Phosphoric Acid Activated Carbons from Globe Artichoke Leaves, Fuel Process, Technol., Vol. 92, No. 6, 2011, pp. 1203-1212, https://doi.org/10.1016/j.fuproc.2011.01.014.
[11] M. A. Islam, M. J. Ahmed, W. A. Khandav, M. Asif, B. H. Hameed, Mesoporous Activated Coconut Shell-Derived Hydrochar Prepared via Hydrothermal Carbonization-NaOH Activation for Methylene Blue Adsorption, J. Environ. Manag., Vol. 203, Part 1, 2017, pp. 237-244, https://doi.org/10.1016/j.jenvman.2017.07.029.
[12] V. Tharaneedhar, P. S. Kumar, A. Anbalagan, C. Ravikumar, J. Vasudevan, Prediction and Interpretation of Adsorption Parameters for the Sequestration of Methylene Blue Dye from Aqueous Solution using Microwave Assisted Corncob Activated Carbon, Sustain, Mater, Technol., Vol. 11, 2017, pp. 1-11, https://doi.org/ 10.1016/j.susmat.2016.11.001.
[13] S. Sahu, S. Pahi, S. Tripathy, K. Singh, A. Behera, U. K. Sahu, R. K. Patel, Adsorption of Methylene Blue on Chemically Modified Lychee Seed Biochar: Dynamic, Equilibrium, and Thermodynamic Study, Journal of Molecular Liquids, Vol. 315, 2020, pp. e113743, https://doi.org/10.1016/j.molliq.2020.113743.
[14] A. Subratti, J. L. Vidal, L. J. Lalgee, F. M. Kertonb, N. K. Jalsa, Preparation and Characterization of Biochar Derived from the Fruit Seed of Cedrela Odorata L and Evaluation of Its Adsorption Capacity with Methylene Blue, Sustainable Chemistry and Pharmacy, Vol. 21, 2021, pp. e100421, https://doi.org/10.1016/j.scp.2021.100421.
[15] K. Tohdee, S.fSemmad, A. Jotisankasa, B. Jongsomjit, T. Somsiripan, Asadullah, Sustainable Adsorption of Methylene Blue onto Biochar-based Adsorbents Derived from Oil Palm Empty Fruit Branch: Performance and Reusability Analysis, Bioresource Technology Reports, Vol. 25, 2024, pp. e101755, https://doi.org/10.1016/j.biteb.2023.101755.
[16] E. A. Azim, M. Samy, M. Hanafy, H. Mahanna, Novel Mint-stalks Derived Biochar for the Adsorption of Methylene Blue Dye: Effect of Operating Parameters, Adsorption Mechanism, Kinetics, Isotherms, and Thermodynamics, Journal of Environmental Management, Vol. 357 , 2024, pp. e120738,
https://doi.org/10.1016/j.jenvman.2024.120738.
[17] S. Sen, M. Israr, S. Singh, M. K. Singh, R. S. Verma, D. U. Bawankule, Pharmaceutical, Cosmeceutical, Food Additive and Agricultural Perspectives of Cymbopogon Martini: A Potential Industrial Aromatic Crop, South African Journal of Botany, Vol. 158, 2023, pp. 277-291, https://doi.org/10.1016/j.sajb.2023.05.007.
[18] M. Greenway, P. de Rozari, A. El Hanandeh, Plant Growth and Nutrient Accumulation in MelaleucafQuinquenervia and Cymbopogong Citratus Treating High Strength Sewage Effluent in Constructed Wetland Systems with Biochar Media, Ecological Engineering, Vol. 180, 2022, pp. e106667,
https://doi.org/10.1016/j.ecoleng.2022.106667.
[19] K. A. A. Putri, A. Keereerak, W. Chinpa, Novel Cellulose-Based Biosorbent from Lemongrass Leaf Combined with Cellulose Acetate for Adsorption of Crystal Violet, International Journal of Biological Macromolecules, Vol. 156, 2020, pp. 762-772, https://doi.org/10.1016/j.ijbiomac.2020.04.100.
[20] P. Kumari, W. Raza, A. Meena, Lemongrass Cellulose Nanofibers for Controlled Release of Curcumin and Its Mechanism of Action, Industrial Crops and Products, Vol. 173, 2021, pp. e114099, https://doi.org/ 10.1016/j.indcrop.2021.114099.
[21] Y. S. Ngoh, M. A. Nawi, Role of Bentonite Adsorbent Sub-layer in the Photocatalytic Adsorptive Removal of Methylene Blue by the Immobilized TiO2/Bentonite System, Int. J. Environ. Sci. Technol., Vol. 13, 2016, pp. 907-926, https://doi.org/10.1007/s13762-015-0928-5.
[22] L. Wei, J. Lu, Adsorption of Microcystin-LR by Rice Straw Biochars with Different Pyrolysis Temperatures, Environmental Technology & Innovation, Vol. 23, 2021, pp. e101609, https://doi.org/ 10.1016/j.eti.2021.101609.
[23] R. Xie, Y. Zhu, H. Zhang, P. Zhang, L. Han, Effects and Mechanism of Pyrolysis Temperature on Physicochemical Properties of Corn Stalk Pellet Biochar based on Combined Characterization Approach of Microcomputed Tomography and Chemical Analysis, Bioresource Technology, Vol. 329, 2021, pp. e124907, https://doi.org/ 10.1016/j.biortech.2021.124907.
[24] M. E. Mahmoud, S. A. A. A. Ali, S. M. T. Elweshahy, Effcient and Ultrafast Removal of Cd(II) and Sm(III) from Water by Leaves of Cynara Scolymus Derived Biochar, Materials Research Bulletin, Vol. 141, 2021, pp. e111334, https://doi.org/10.1016/j.materresbull.2021.111334.
[25] F. M. Adesemuyi, M. A. Adebayo, A. O. Akinola, E. F. Olasehinde, K. A. Adewole, L. Lajide, Preparation and Characterisation of Biochars from Elephant Grass and their Utilisation for Aqueous Nitrate Removal: Effect of Pyrolysis Temperature, Journal of Environmental Chemical Engineering, Vol. 8, No. 6, 2020, pp. e104507, https://doi.org/ 10.1016/j.jece.2020.104507.
[26] D. K. Mishra, S. K. Samad , A. K. Varma, V. A. Mendhe, Pore Geometrical Complexity and Fractal Facets of Permian Shales and Coals from Auranga Basin, Jharkhand, India, Journal of Natural Gas Science and Engineering, Vol. 52, 2018, pp 25-43, https://doi.org/10.1016/j.jngse.2018.01.014.S.
[27] K. Ghosh, A. Bandyopadhyay, Adsorption of Methylene Blue onto Citric Acid Treated Carbonized Bamboo Leaves Powder: Equilibrium, Kinetics, Thermodynamics Analyses. J. Mol. Liq., Vol. 248, 2017, pp. 413-424,
https://doi.org/10.1016/j.molliq.2017.10.086.
[28] A. H. Jawad, M. A. M. Ishak, A. M. Farhan, K. Ismail, Response Surface Methodology Approach for Optimization of Color Removal and COD Reduction of Methylene Blue using Microwave-Induced NaOH Activated Carbon from Biomass Waste, Desalination Water Treat, Vol. 62, 2017, pp. 208-220, https://doi.org/10.5004/dwt.2017.20132.
[29] C. Djama, A. Bouguettoucha, D. Chebli, A. Amrane, H. Tahraoui, J. Zhang, L. Mouni, Experimental and Theoretical Study of Methylene Blue Adsorption on a New Raw Material, Cynarascolymus - A Statistical Physics Assessment, Sustainability, Vol. 15, No. 13, 2023, pp. e10364, https://doi.org/10.3390/su151310364.
[30] A. I. Adeogun, O. A. Osideko, M. A. Idowu, V. Shappur, O. A. Akinloye, B. R. Babu, Chitosan Supported CoFe2O4 for the Removal of Anthraquinone Dyes: Kinetics, Equilibrium and Thermodynamics Studies, SN Appl. Sci., Vol. 2, 2020, pp. e795, https://doi.org/10.1007/s42452-020-2552-3.
[31] V. T. Vi, Adsorption of Methylene Blue on Wastes from Lemongrass Leaves after Essential Oil Extraction, Journal of Science Technology and Food, Vol. 22, No. 2, 2022, pp. 3-10.
[32] N. X. Cuong, Study on Adsorption of Methylene Blue from Aqueous Solution by Biochar Derived from Mimosa Pigra Plant, VNU Journal of Science: Earth and Environmental Sciences, Vol. 37, No. 2, 2021, pp. 43-54,
https://doi.org/10.25073/2588-1094/vnuees.4582.
[33] D. H. Sam, T. T. Suong, N. T. Hiep, T. A. Khoa, T. P. Vu, Adsorption of Methylene Blue onto Biochar Derived from the Dragon Fruit Branches, Can Tho University Journal of Science, Vol. 59, No. 5A, 2023, pp. 72-78,
https://doi.org/10.22144/ctujos.2023.195.
[34] I. Tegin, M. F. Demirel, I. Alacabey, E. Yabalak, Investigation of the Efectiveness of Waste Nut Shell-based Hydrochars in Water Treatment: a Model Study for the Adsorption of Methylene Blue, Biomass Conversion and Biorefnery, Vol. 14, 2024. pp. 10399-10412, https://doi.org/10.1007/s13399-022-02996-y.
[35] Q. Ge, P. Li, M. Liu, G. Xiao, Z. Xiao, J. Mao, X. Gai, Removal of Methylene Blue by Porous Biochar Obtained by KOH Activation from Bamboo Biochar, Bioresources and Bioprocessing, Vol. 10, 2023, pp. e51, https://doi.org/10.1186/s40643-023-00671-2.
[36] J. H. Potgieter, C. Pardesi, and S. Pearson, A Kinetic and Thermodynamic Investigation into the Removal of Methyl Orange from Wastewater Utilizing Fly Ash in Different Process Configurations, Environ, Geochem. Health,
Vol. 43, 2021, pp. 2539-2550, https://doi.org/10.1007/s10653-020-00567-6.
[37] F. Zhang, X. Chen, F. Wu, Y. Ji, High Adsorption Capability and Selectivity of ZnO Nanoparticles for Dye Removal, Colloids Surfaces A Physicochem. Eng. Asp., Vol. 509, 2016, pp. 474-483, https://doi.org/10.1016/j.colsurfa.2016.09.059.