Nguyen Thi Nhan, Vu Anh Duc, Mai Xuan Dung, Hoang Quang Bac

Main Article Content

Abstract

Water-soluble CdTe quantum dots (QDs) have been utilized as photoluminescence probes for the detection of metal ions such as Pb2+, Hg2+, Cd2+, etc. We initially developed highly photoluminescence (PL) Zn-doped CdTe for toxic ions detection. A study on the changes of optical properties of Zn-doped CdTe and CdTe QDs when exposed to Pb2+ suggested that Pb2+ could act as a surface passivating agent to reduce Te2- dangling bonds while Zn2+ dopant stabilizes the QDs surface against ambient oxidation. The results demonstrated herein provide useful  understandings of the interactions between water-soluble QDs and metal ions. These results suggest further applications of QDs in sensing metal ions.

Keywords: CdTe quantum dots, sensing, photoluminescence, metal ions, doping.

References

[1] S. A. Elfeky, Facile Sensor for Heavy Metals Based on Thiol-Capped CdTe Quantum Dot, J. Environ, Anal, Chem, Vol. 5, 2018, pp. 1-5, https://doi.org/10.4172/2380-2391.1000232.
[2] P. Yang, F. Dong, Y. Yu, J. Shi, M. Sun, Copper Ion Detection Method Based on a Quantum Dot Fluorescent Probe, Mater. Sci. XX, 2021, pp. 1-6, https://doi.org/10.5755/j02.ms.28024.
[3] H. Li, W. Lu, G. Zhao, B. Song, J. Zhou, W. Dong, G. Han, Silver Ion-doped CdTe Quantum Dots as Fluorescent Probe for Hg2+detection, RSC Adv. 10, 2020, pp. 38965-38973, https://doi.org/10.1039/d0ra07140d.
[4] X. Zhu, Z. Zhao, X. Chi, J. Gao, Facile, Sensitive, and Ratiometric Detection of Mercuric Ions using GSH-capped Semiconductor Quantum Dots, Analyst, Vol. 138, 2013, pp. 3230-3237, https://doi.org/10.1039/c3an00011g.
[5] Y. Zhu, Z. Li, M. Chen, H. M. Cooper, G. Q. Max Lu, Z. P. Xu, One-pot Preparation of Highly Fluorescent Cadmium Telluride/cadmium Sulfide Quantum Dots under Neutral-pH Condition for Biological Applications, J. Colloid Interface Sci. Vol. 390, 2013, pp. 3-10, https://doi.org/10.1016/j.jcis.2012.08.003.
[6] J. Du, X. Li, S. Wang, Y. Wu, X. Hao, C. Xu, X. Zhao, Microwave-assisted Synthesis of Highly Luminescent Glutathione-capped Zn 1-xCd xTe Alloyed Quantum Dots with Excellent Biocompatibility, J. Mater, Chem, Vol. 22, 2012, pp. 11390-11395, https://doi.org/10.1039/c2jm30882g.
[7] S. Najafi, M. Safari, S. Amani, K. Mansouri, M. Shahlaei, Preparation, Characterization and Cell Cytotoxicity of Pd-doped CdTe Quantum Dots and its Application as a Sensitive Fluorescent Nanoprobe, J. Mater, Sci, Mater, Electron, Vol. 30, 2019, pp. 14233-14242, https://doi.org/10.1007/s10854-019-01792-1.
[8] A. Tall, K. R. D. Costa, M. J. de Oliveira, I. Tapsoba, U. Rocha, T. O. Sales, M. O. F. Goulart, J. C. C. Santos, Photoluminescent Nanoprobes Based on Thiols Capped CdTe Quantum Dots for Direct Determination of Thimerosal in Vaccines, Talanta, Vol. 221, 2021, pp. số trang đầu-trang cuối, https://doi.org/10.1016/j.talanta.2020.121545.
[9] D. Das, R. K. Dutta, Photoluminescence Lifetime Based Nickel Ion Detection by Glutathione Capped CdTe/CdS Core-shell Quantum Dots, J. Photochem, Photobiol, A Chem, Vol. 416, 2021, pp. 113323,
https://doi.org/10.1016/j.jphotochem.2021.113323.
[10] M. Labeb, A. H. Sakr, M. Soliman, T. M. Abdel-Fattah, S. Ebrahim, Effect of Capping Agent on Selectivity and Sensitivity of CdTe Quantum Dots Optical Sensor for Detection of Mercury Ions, Opt, Mater, Amst, Vol. 79, 2018, pp. 331-335, https://doi.org/10.1016/j.optmat.2018.03.060.
[11] H. Bao, Y. Gong, Z. Li, M. Gao, Enhancement Effect of Illumination on the Photoluminescence of Water-soluble CdTe Nanocrystals: Toward Highly Fluorescent CdTe/CdS Core-shell Structure, Chem, Mater, Vol. 16, 2004,
pp. 3853-3859, https://doi.org/10.1021/cm049172b.
[12] Y. He, L. M. Sai, H. T. Lu, M. Hu, W. Y. Lai, Q. L. Fan, L. H. Wang, W. Huang, Microwave-assisted Synthesis of Water-dispersed CdTe Nanocrystals with High Luminescent Efficiency and Narrow Size Distribution, Chem, Mater, Vol. 19, 2007, pp. 359-365, https://doi.org/10.1021/cm061863f.
[13] F. Farahmandzadeh, M. Molaei, M. Karimipour, A. R. Shamsi, Highly Luminescence CdTe/ZnSe Core-shell QDs; Synthesis by a Simple Low Temperature Approach, J. Mater, Sci, Mater, Electron, Vol. 31, 2020, pp. 12382-12388, https://doi.org/10.1007/s10854-020-03784-y.
[14] H. Zare, M. Marandi, S. Fardindoost, V. K. Sharma, A. Yeltik, O. Akhavan, H. V. Demir, N. Taghavinia, High-efficiency CdTe/CdS Core/shell Nanocrystals in Water Enabled by Photo-induced Colloidal Hetero-epitaxy of CdS Shelling at Room Temperature, Nano Res, Vol. 8, 2015, pp. 2317-2328, https://doi.org/10.1007/s12274-015-0742-x.
[15] A. Samanta, Z. Deng, Y. Liu, Aqueous Synthesis of Glutathione-capped CdTe/CdS/ZnS and CdTe/CdSe/ZnS Core/shell/shell Nanocrystal Heterostructures, Langmuir, Vol. 28, 2012, pp. 8205-8215, https://doi.org/10.1021/la300515a.
[16] M. Ulusoy, J. G. Walter, A. Lavrentieva, I. Kretschmer, L. Sandiford, A. Le Marois, R. Bongartz, P. Aliuos, K. Suhling, F. Stahl, M. Green, T. Scheper, One-pot Aqueous Synthesis of Highly Strained CdTe/CdS/ZnS Nanocrystals and Their Interactions with Cells, RSC Adv, Vol. 5, 2015, pp. 7485-7494, ttps://doi.org/10.1039/c4ra13386b.
[17] J. Jasieniak, M. Califano, S. E. Watkins, Size-dependent Valence and Conduction Band-edge Energies of Semiconductor Nanocrystals, ACS Nano, Vol. 5, 2011, pp. 5888-5902, https://doi.org/10.1021/nn201681s.
[18] J. Chang, H. Xia, S. Wu, S. Zhang, Prolonging the Lifetime of Excited Electrons of QDs by Capping them with π-conjugated Thiol Ligands, J. Mater, Chem. C, Vol. 2, 2014, pp. 2939-2943, https://doi.org/10.1039/c3tc32523g.
[19] J. S. Kamal, A. Omari, K. Van Hoecke, Q. Zhao, A. Vantomme, F. Vanhaecke, R. K. Capek, Z. Hens, Size-Dependent Optical Properties of Zinc Blende Cadmium Telluride.pdf, 2012.
[20] M. Boucharef, S. Benalia, D. Rached, M. Merabet, L. Djoudi, B. Abidri, N. Benkhettou, First-principles Study of the Electronic and Structural Properties of (CdTe)n/(ZnTe)n Superlattices, Superlattices Microstruct, Vol. 75, 2014, pp. 818-830, https://doi.org/10.1016/j.spmi.2014.09.014.
[21] Y. R. Luo, Comprehensive Handbook of Chemical Bond Energies, Compr, Handb, Chem, Bond Energies, 2007, pp. 1-1656, https://doi.org/10.1201/9781420007282.
[22] W. Li, J. Liu, K. Sun, H. Dou, K. Tao, Highly Fluorescent Water Soluble CdxZn1-xTe Alloyed Quantum Dots Prepared in Aqueous Solution: One-step Synthesis and the Alloy Effect of Zn, J. Mater, Chem, Vol. 20, 2010, pp. 2133-2138, https://doi.org/10.1039/b921686c.
[23] O. Adegoke, E. Y. Park, Size-confined Fixed-composition and Composition-dependent Engineered Band Gap Alloying Induces Different Internal Structures in L-cysteine-capped Alloyed Quaternary CdZnTeS Quantum Dots, Sci, Rep, Vol. 6, 2016, pp.1-9, https://doi.org/10.1038/srep27288.
[24] J. L. Gautier, J. P. Monrás, I. O. Osorio-Román, C.C. Vásquez, D. Bravo, T. Herranz, J. F. Marco, J. M. Pérez-Donoso, Surface Characterization of GSH-CdTe Quantum Dots, Mater, Chem, Phys, Vol. 140, 2013, pp. 113-118,
https://doi.org/10.1016/j.matchemphys.2013.03.008.
[25] B. R. C. Vale, R. S. Mourão, J. Bettini, J. C. L. Sousa, J. L. Ferrari, P. Reiss, D. Aldakov, M. A. Schiavon, Ligand Induced Switching of the Band Alignment in Aqueous Synthesized CdTe/CdS Core/shell nanocrystals, Sci. Rep. 9, 2019, pp. 1-12, https://doi.org/10.1038/s41598-019-44787-y.
[26] S. Taniguchi, M. Green, The Room-temperature Structural and Optical Transformation of Cadmium Chalcogenide Quantum Dots Triggered by Reactive Cations, J. Mater, Chem, Vol. 21, 2011, pp. 11592-11598,
https://doi.org/10.1039/c1jm10248f.
[27] N. Kirkwood, J. O. V. Monchen, R. W. Crisp, G. Grimaldi, H. A. C. Bergstein, I. Du Fossé, W. Van Der Stam, I. Infante, A. J. Houtepen, Finding and Fixing Traps in II-VI and III-V Colloidal Quantum Dots: The Importance of Z-Type Ligand Passivation, J. Am, Chem. Soc, Vol. 140, 2018, pp. 15712-15723, https://doi.org/10.1021/jacs.8b07783.