EV-A71 Infections: Life Cycle and Prevention Strategies
Main Article Content
Abstract
Hand, Foot, and Mouth disease (HFMD) is a highly contagious disease caused by enteroviruses, which is common in Asia-Pacific countries, including China, Hong Kong, Korea, Malaysia, Singapore, Thailand, and Vietnam. Children are more susceptible to infection, especially newborns and children under-5-year-old. HFMD may cause severe symptoms like encephalitis, meningitis, myocarditis, and acute pulmonary edema which can lead to death if no early detection or prompt treating is carried out. Various professional researches indicated the main causes of HFMD were enteroviruses in the Picornaviridae family, particularly Coxsackievirus A16 (CVA16) and Enterovirus 71 (EV71). Both factors cause the same beginning symptoms, but while CVA16’s are mild and can be self-recuperated after 10-14 days, EV71’s are more dangerous and can lead to neurological, cardiovascular, and respiratory complications, causing death or permanent brain damages.
Preventing EV71 infection is extremely necessary as it not only decreases severe HFMD but also interferes with the virus speciation through homologous recombination to reduce the complexity of epidemic situation in the world. Therefore, synthesizing information about the virus life cycle and prevention strategies against EV71 is crucial and essential to provide an overview about the potential methods for vaccines and medicines development or food supplement manufactures which contributes to preventing EV71 infection.
References
[2]. Huang S.W., Cheng D. , Wang J.R., Enterovirus A71: virulence, antigenicity, and genetic evolution over the years, J Biomed Sci, 26(1), (2019) 81.
[3]. Brown B.A. , Pallansch M.A., Complete nucleotide sequence of enterovirus 71 is distinct from poliovirus, Virus Research, 39(2-3), (1995) 195-205.
[4]. Yi E.J., Shin Y.J., Kim J.H., Kim T.G. , Chang S.Y., Enterovirus 71 infection and vaccines, Clin Exp Vaccine Res, 6(1), (2017) 4-14.
[5]. Yamayoshi S., Fujii K. , Koike S., Scavenger receptor b2 as a receptor for hand, foot, and mouth disease and severe neurological diseases, Front Microbiol, 3, (2012) 32.
[6]. Dang M., Wang X., Wang Q., Wang Y., Lin J., Sun Y., Li X., Zhang L., Lou Z., Wang J. , Rao Z., Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71, Protein Cell, 5(9), (2014) 692-703.
[7]. Eskelinen E.-L., Tanaka Y. , Saftig P., At the acidic edge: emerging functions for lysosomal membrane proteins, Trends in Cell Biology, 13(3), (2003) 137-145.
[8]. Fujii K., Nagata N., Sato Y., Ong K.C., Wong K.T., Yamayoshi S., Shimanuki M., Shitara H., Taya C. , Koike S., Transgenic mouse model for the study of enterovirus 71 neuropathogenesis, Proc Natl Acad Sci U S A, 110(36), (2013) 14753-14758.
[9]. Nishimura Y. , Shimizu H., [Identification of P-selectin glycoprotein ligand-1 as one of the cellular receptors for enterovirus 71], Uirusu, 59(2), (2009) 195-203.
[10]. Nishimura Y., Shimojima M., Tano Y., Miyamura T., Wakita T. , Shimizu H., Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71, Nat Med, 15(7), (2009) 794-797.
[11]. Nishimura Y., Wakita T. , Shimizu H., Tyrosine sulfation of the amino terminus of PSGL-1 is critical for enterovirus 71 infection, PLoS Pathog, 6(11), (2010) e1001174.
[12]. Liu J., Dong W., Quan X., Ma C., Qin C. , Zhang L., Transgenic expression of human P-selectin glycoprotein ligand-1 is not sufficient for enterovirus 71 infection in mice, Arch Virol, 157(3), (2012) 539-543.
[13]. Laszik Z., Jansen P.J., Cummings R.D., Tedder T.F., McEver R.P. , Moore K.L., P-selectin glycoprotein ligand-1 is broadly expressed in cells of myeloid, lymphoid, and dendritic lineage and in some nonhematopoietic cells, Blood, 88(8), (1996) 3010-3021.
[14]. Rintala-Dempsey A.C., Rezvanpour A. , Shaw G.S., S100-annexin complexes--structural insights, FEBS J, 275(20), (2008) 4956-4966.
[15]. Gerke V. , Moss S.E., Annexins: From Structure to Function, Physiological Reviews, 82(2), (2002) 331-371.
[16]. Yang S.L., Chou Y.T., Wu C.N. , Ho M.S., Annexin II binds to capsid protein VP1 of enterovirus 71 and enhances viral infectivity, J Virol, 85(22), (2011) 11809-11820.
[17]. Olofsson S. , Bergstrom T., Glycoconjugate glycans as viral receptors, Ann Med, 37(3), (2005) 154-172.
[18]. Tan C.W., Poh C.L., Sam I.C. , Chan Y.F., Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an attachment receptor, J Virol, 87(1), (2013) 611-620.
[19]. Song X., Yu H., Chen X., Lasanajak Y., Tappert M.M., Air G.M., Tiwari V.K., Cao H., Chokhawala H.A., Zheng H., Cummings R.D. , Smith D.F., A sialylated glycan microarray reveals novel interactions of modified sialic acids with proteins and viruses, J Biol Chem, 286(36), (2011) 31610-31622.
[20]. Varki N.M. , Varki A., Diversity in cell surface sialic acid presentations: implications for biology and disease, Lab Invest, 87(9), (2007) 851-857.
[21]. Yang B., Chuang H. , Yang K.D., Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells, Virol J, 6, (2009) 141.
[22]. Su P.Y., Liu Y.T., Chang H.Y., Huang S.W., Wang Y.F., Yu C.K., Wang J.R. , Chang C.F., Cell surface sialylation affects binding of enterovirus 71 to rhabdomyosarcoma and neuroblastoma cells, BMC Microbiol, 12, (2012) 162.
[23]. Hussain K.M., Leong K.L., Ng M.M. , Chu J.J., The essential role of clathrin-mediated endocytosis in the infectious entry of human enterovirus 71, J Biol Chem, 286(1), (2011) 309-321.
[24]. Kaksonen M. , Roux A., Mechanisms of clathrin-mediated endocytosis, Nat Rev Mol Cell Biol, 19(5), (2018) 313-326.
[25]. Grove J., Huby T., Stamataki Z., Vanwolleghem T., Meuleman P., Farquhar M., Schwarz A., Moreau M., Owen J.S., Leroux-Roels G., Balfe P. , McKeating J.A., Scavenger receptor BI and BII expression levels modulate hepatitis C virus infectivity, J Virol, 81(7), (2007) 3162-3169.
[26]. Lin Y.W., Lin H.Y., Tsou Y.L., Chitra E., Hsiao K.N., Shao H.Y., Liu C.C., Sia C., Chong P. , Chow Y.H., Human SCARB2-mediated entry and endocytosis of EV71, PLoS One, 7(1), (2012) e30507.
[27]. ViralZone, Caveolin-mediated endocytosis of virus by host, https://viralzone.expasy.org/976, (accessed 4 August 2021).
[28]. ViralZone, Clathrin-mediated endocytosis of virus by host, https://viralzone.expasy.org/957, (accessed 4 August 2021).
[29]. Lin H.Y., Yang Y.T., Yu S.L., Hsiao K.N., Liu C.C., Sia C. , Chow Y.H., Caveolar endocytosis is required for human PSGL-1-mediated enterovirus 71 infection, J Virol, 87(16), (2013) 9064-9076.
[30]. Pelkmans L. , Helenius A., Endocytosis via caveolae, Traffic, 3(5), (2002) 311-320.
[31]. Yamayoshi S., Ohka S., Fujii K. , Koike S., Functional comparison of SCARB2 and PSGL1 as receptors for enterovirus 71, J Virol, 87(6), (2013) 3335-3347.
[32]. Yamayoshi S. , Koike S., Identification of a human SCARB2 region that is important for enterovirus 71 binding and infection, J Virol, 85(10), (2011) 4937-4946.
[33]. Zhao Y., Ren J., Padilla-Parra S., Fry E.E. , Stuart D.I., Lysosome sorting of beta-glucocerebrosidase by LIMP-2 is targeted by the mannose 6-phosphate receptor, Nat Commun, 5, (2014) 4321.
[34]. Matthias Gromeier E.W., Alexander E.Gorbalenya, Genetics, Pathogenesis and Evolution of Picornaviruses, Origin and Evolution of Viruses, 12, (1999).
[35]. Thompson S.R. , Sarnow P., Enterovirus 71 contains a type I IRES element that functions when eukaryotic initiation factor eIF4G is cleaved, Virology, 315(1), (2003) 259-266.
[36]. de Breyne S., Yu Y., Unbehaun A., Pestova T.V. , Hellen C.U., Direct functional interaction of initiation factor eIF4G with type 1 internal ribosomal entry sites, Proc Natl Acad Sci U S A, 106(23), (2009) 9197-9202.
[37]. Pilipenko E.V., Viktorova E.G., Guest S.T., Agol V.I. , Roos R.P., Cell-specific proteins regulate viral RNA translation and virus-induced disease, EMBO J, 20(23), (2001) 6899-6908.
[38]. E V Pilipenko 1 T.V.P., V G Kolupaeva, E V Khitrina, A N Poperechnaya, V I Agol, C U Hellen, A cell cycle-dependent protein serves as a template-specific translation initiation factor, Genes Dev, 14, (2004).
[39]. Leong S.Y., Ong B.K. , Chu J.J., The role of Misshapen NCK-related kinase (MINK), a novel Ste20 family kinase, in the IRES-mediated protein translation of human enterovirus 71, PLoS Pathog, 11(3), (2015) e1004686.
[40]. Kafasla P., Morgner N., Robinson C.V. , Jackson R.J., Polypyrimidine tract-binding protein stimulates the poliovirus IRES by modulating eIF4G binding, EMBO J, 29(21), (2010) 3710-3722.
[41]. Sean P., Nguyen J.H. , Semler B.L., Altered interactions between stem-loop IV within the 5' noncoding region of coxsackievirus RNA and poly(rC) binding protein 2: effects on IRES-mediated translation and viral infectivity, Virology, 389(1-2), (2009) 45-58.
[42]. Choi K., Kim J.H., Li X., Paek K.Y., Ha S.H., Ryu S.H., Wimmer E. , Jang S.K., Identification of cellular proteins enhancing activities of internal ribosomal entry sites by competition with oligodeoxynucleotides, Nucleic Acids Res, 32(4), (2004) 1308-1317.
[43]. Hung C.T., Kung Y.A., Li M.L., Brewer G., Lee K.M., Liu S.T. , Shih S.R., Additive Promotion of Viral Internal Ribosome Entry Site-Mediated Translation by Far Upstream Element-Binding Protein 1 and an Enterovirus 71-Induced Cleavage Product, PLoS Pathog, 12(10), (2016) e1005959.
[44]. Yuan J., Shen L., Wu J., Zou X., Gu J., Chen J. , Mao L., Enterovirus A71 Proteins: Structure and Function, Front Microbiol, 9, (2018) 286.
[45]. Lin J.Y., Chen T.C., Weng K.F., Chang S.C., Chen L.L. , Shih S.R., Viral and host proteins involved in picornavirus life cycle, J Biomed Sci, 16, (2009) 103.
[46]. Buck K.W., Comparison of the replication of positive-stranded RNA viruses of plants and animals, Advances in virus research, 47, (1996).
[47]. Salonen A., Ahola T. , Kaariainen L., Viral RNA replication in association with cellular membranes, Curr Top Microbiol Immunol, 285, (2005) 139-173.
[48]. Schlegel A., Giddings T.H., Jr., Ladinsky M.S. , Kirkegaard K., Cellular origin and ultrastructure of membranes induced during poliovirus infection, J Virol, 70(10), (1996) 6576-6588.
[49]. Huang S.C., Chang C.L., Wang P.S., Tsai Y. , Liu H.S., Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication, J Med Virol, 81(7), (2009) 1241-1252.
[50]. Richards O.C., Spagnolo J.F., Lyle J.M., Vleck S.E., Kuchta R.D. , Kirkegaard K., Intramolecular and intermolecular uridylylation by poliovirus RNA-dependent RNA polymerase, J Virol, 80(15), (2006) 7405-7415.
[51]. Pelletier J. , Sonenberg N., Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA, Nature, 334(6180), (1988) 320-325.
[52]. Gamarnik A.V. , Andino R., Switch from translation to RNA replication in a positive-stranded RNA virus, Genes Dev, 12(15), (1998) 2293-2304.
[53]. Pathak H.B., Arnold J.J., Wiegand P.N., Hargittai M.R. , Cameron C.E., Picornavirus genome replication: assembly and organization of the VPg uridylylation ribonucleoprotein (initiation) complex, J Biol Chem, 282(22), (2007) 16202-16213.
[54]. Paul A.V., Rieder E., Kim D.W., van Boom J.H. , Wimmer E., Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg, J Virol, 74(22), (2000) 10359-10370.
[55]. Cordey S., Gerlach D., Junier T., Zdobnov E.M., Kaiser L. , Tapparel C., The cis-acting replication elements define human enterovirus and rhinovirus species, RNA, 14(8), (2008) 1568-1578.
[56]. Murray K.E. , Barton D.J., Poliovirus CRE-dependent VPg uridylylation is required for positive-strand RNA synthesis but not for negative-strand RNA synthesis, J Virol, 77(8), (2003) 4739-4750.
[57]. van Ooij M.J.M., Vogt D.A., Paul A., Castro C., Kuijpers J., van Kuppeveld F.J.M., Cameron C.E., Wimmer E., Andino R. , Melchers W.J.G., Structural and functional characterization of the coxsackievirus B3 CRE(2C): role of CRE(2C) in negative- and positive-strand RNA synthesis, J Gen Virol, 87(Pt 1), (2006) 103-113.
[58]. Lin J.Y., Li M.L., Huang P.N., Chien K.Y., Horng J.T. , Shih S.R., Heterogeneous nuclear ribonuclear protein K interacts with the enterovirus 71 5' untranslated region and participates in virus replication, J Gen Virol, 89(Pt 10), (2008) 2540-2549.
[59]. Tang W.F., Yang S.Y., Wu B.W., Jheng J.R., Chen Y.L., Shih C.H., Lin K.H., Lai H.C., Tang P. , Horng J.T., Reticulon 3 binds the 2C protein of enterovirus 71 and is required for viral replication, J Biol Chem, 282(8), (2007) 5888-5898.
[60]. Yi L., Lu J., Kung H.F. , He M.L., The virology and developments toward control of human enterovirus 71, Crit Rev Microbiol, 37(4), (2011) 313-327.
[61]. Kuo R.L., Kung S.H., Hsu Y.Y. , Liu W.T., Infection with enterovirus 71 or expression of its 2A protease induces apoptotic cell death, J Gen Virol, 83(Pt 6), (2002) 1367-1376.
[62]. Li M.L., Lin J.Y., Chen B.S., Weng K.F., Shih S.R., Calderon J.D., Tolbert B.S. , Brewer G., EV71 3C protease induces apoptosis by cleavage of hnRNP A1 to promote apaf-1 translation, PLoS One, 14(9), (2019) e0221048.
[63]. Taylor M.P. , Kirkegaard K., Potential subversion of autophagosomal pathway by picornaviruses, Autophagy, 4(3), (2008) 286-289.
[64]. Pourianfar H.R., Poh C.L., Fecondo J. , Grollo L., In vitro evaluation of the antiviral activity of heparan sulfate mimetic compounds against Enterovirus 71, Virus Res, 169(1), (2012) 22-29.
[65]. Xu T., Lin Z., Wang C.H., Li Y., Zhao M., Hua L. , Zhu B., Prokaryotic expression and identification of scavenger receptor B2, Acta Virol, 62(1), (2018) 50-57.
[66]. Vo-Nguyen H.V., Nguyen T.T., Vu H.T., Nguyen T.T., Hoang Q.C., Tran T.L. , Tran-Van H., Recombinant Human SCARB2 Expressed in Escherichia coli and its Potential in Enterovirus 71 Blockage, Iran J Sci Technol Trans A Sci, (2021) 1-7.
[67]. Arita M., Wakita T. , Shimizu H., Characterization of pharmacologically active compounds that inhibit poliovirus and enterovirus 71 infectivity, J Gen Virol, 89(Pt 10), (2008) 2518-2530.
[68]. Chiu Y.H., Chan Y.L., Tsai L.W., Li T.L. , Wu C.J., Prevention of human enterovirus 71 infection by kappa carrageenan, Antiviral Res, 95(2), (2012) 128-134.
[69]. Tan C.W., Chan Y.F., Sim K.M., Tan E.L. , Poh C.L., Inhibition of enterovirus 71 (EV-71) infections by a novel antiviral peptide derived from EV-71 capsid protein VP1, PLoS One, 7(5), (2012) e34589.
[70]. Weng T.Y., Chen L.C., Shyu H.W., Chen S.H., Wang J.R., Yu C.K., Lei H.Y. , Yeh T.M., Lactoferrin inhibits enterovirus 71 infection by binding to VP1 protein and host cells, Antiviral Res, 67(1), (2005) 31-37.
[71]. Fox M.P., Otto M.J. , McKinlay M.A., Prevention of rhinovirus and poliovirus uncoating by WIN 51711, a new antiviral drug, Antimicrob Agents Chemother, 30(1), (1986) 110-116.
[72]. McKinlay M.A., Frank J.A., Jr., Benziger D.P. , Steinberg B.A., Use of WIN 51711 to prevent echovirus type 9-induced paralysis in suckling mice, J Infect Dis, 154(4), (1986) 676-681.
[73]. See D.M. , Tilles J.G., Treatment of Coxsackievirus A9 myocarditis in mice with WIN 54954, Antimicrob Agents Chemother, 36(2), (1992) 425-428.
[74]. Shia K.S., Li W.T., Chang C.M., Hsu M.C., Chern J.H., Leong M.K., Tseng S.N., Lee C.C., Lee Y.C., Chen S.J., Peng K.C., Tseng H.Y., Chang Y.L., Tai C.L. , Shih S.R., Design, synthesis, and structure-activity relationship of pyridyl imidazolidinones: a novel class of potent and selective human enterovirus 71 inhibitors, J Med Chem, 45(8), (2002) 1644-1655.
[75]. Chen T.C., Liu S.C., Huang P.N., Chang H.Y., Chern J.H. , Shih S.R., Antiviral activity of pyridyl imidazolidinones against enterovirus 71 variants, J Biomed Sci, 15(3), (2008) 291-300.
[76]. Barnard D.L., Hubbard V.D., Smee D.F., Sidwell R.W., Watson K.G., Tucker S.P. , Reece P.A., In vitro activity of expanded-spectrum pyridazinyl oxime ethers related to pirodavir: novel capsid-binding inhibitors with potent antipicornavirus activity, Antimicrob Agents Chemother, 48(5), (2004) 1766-1772.
[77]. Tisdale M. , Selway J.W., Effect of dichloroflavan (BW683C) on the stability and uncoating of rhinovirus type 1B, J Antimicrob Chemother, 14 Suppl A, (1984) 97-105.
[78]. Wu K.X., Ng M.M. , Chu J.J., Developments towards antiviral therapies against enterovirus 71, Drug Discov Today, 15(23-24), (2010) 1041-1051.
[79]. Kole R., Krainer A.R. , Altman S., RNA therapeutics: beyond RNA interference and antisense oligonucleotides, Nat Rev Drug Discov, 11(2), (2012) 125-140.
[80]. Deng J.X., Nie X.J., Lei Y.F., Ma C.F., Xu D.L., Li B., Xu Z.K. , Zhang G.C., The highly conserved 5' untranslated region as an effective target towards the inhibition of Enterovirus 71 replication by unmodified and appropriate 2'-modified siRNAs, J Biomed Sci, 19, (2012) 73.
[81]. Wu Z., Yang F., Zhao R., Zhao L., Guo D. , Jin Q., Identification of small interfering RNAs which inhibit the replication of several Enterovirus 71 strains in China, J Virol Methods, 159(2), (2009) 233-238.
[82]. Sim A.C., Luhur A., Tan T.M., Chow V.T. , Poh C.L., RNA interference against enterovirus 71 infection, Virology, 341(1), (2005) 72-79.
[83]. Tan E.L., Tan T.M., Tak Kwong Chow V. , Poh C.L., Inhibition of enterovirus 71 in virus-infected mice by RNA interference, Mol Ther, 15(11), (2007) 1931-1938.
[84]. Lu W.W., Hsu Y.Y., Yang J.Y. , Kung S.H., Selective inhibition of enterovirus 71 replication by short hairpin RNAs, Biochem Biophys Res Commun, 325(2), (2004) 494-499.
[85]. Lin Y.J., Lai C.C., Lai C.H., Sue S.C., Lin C.W., Hung C.H., Lin T.H., Hsu W.Y., Huang S.M., Hung Y.L., Tien N., Liu X., Chen C.L. , Tsai F.J., Inhibition of enterovirus 71 infections and viral IRES activity by Fructus gardeniae and geniposide, Eur J Med Chem, 62, (2013) 206-213.
[86]. Tsai F.J., Lin C.W., Lai C.C., Lan Y.C., Lai C.H., Hung C.H., Hsueh K.C., Lin T.H., Chang H.C., Wan L., Sheu J.J. , Lin Y.J., Kaempferol inhibits enterovirus 71 replication and internal ribosome entry site (IRES) activity through FUBP and HNRP proteins, Food Chem, 128(2), (2011) 312-322.
[87]. Hoffmann C.E., Neumayer E.M., Haff R.F. , Goldsby R.A., Mode of Action of the Antiviral Activity of Amantadine in Tissue Culture, J Bacteriol, 90(3), (1965) 623-628.
[88]. Chen Y.J., Zeng S.J., Hsu J.T., Horng J.T., Yang H.M., Shih S.R., Chu Y.T. , Wu T.Y., Amantadine as a regulator of internal ribosome entry site, Acta Pharmacol Sin, 29(11), (2008) 1327-1333.
[89]. Palmenberg A.C., Proteolytic processing of picornaviral polyprotein, Annu Rev Microbiol, 44, (1990) 603-623.
[90]. Patick A.K., Rhinovirus chemotherapy, Antiviral Res, 71(2-3), (2006) 391-396.
[91]. Binford S.L., Weady P.T., Maldonado F., Brothers M.A., Matthews D.A. , Patick A.K., In vitro resistance study of rupintrivir, a novel inhibitor of human rhinovirus 3C protease, Antimicrob Agents Chemother, 51(12), (2007) 4366-4373.
[92]. Kuo C.J., Shie J.J., Fang J.M., Yen G.R., Hsu J.T., Liu H.G., Tseng S.N., Chang S.C., Lee C.Y., Shih S.R. , Liang P.H., Design, synthesis, and evaluation of 3C protease inhibitors as anti-enterovirus 71 agents, Bioorg Med Chem, 16(15), (2008) 7388-7398.
[93]. Lin Y.J., Chang Y.C., Hsiao N.W., Hsieh J.L., Wang C.Y., Kung S.H., Tsai F.J., Lan Y.C. , Lin C.W., Fisetin and rutin as 3C protease inhibitors of enterovirus A71, J Virol Methods, 182(1-2), (2012) 93-98.
[94]. Falah N., Montserret R., Lelogeais V., Schuffenecker I., Lina B., Cortay J.C. , Violot S., Blocking human enterovirus 71 replication by targeting viral 2A protease, J Antimicrob Chemother, 67(12), (2012) 2865-2869.
[95]. Wang Q.M., Johnson R.B., Jungheim L.N., Cohen J.D. , Villarreal E.C., Dual inhibition of human rhinovirus 2A and 3C proteases by homophthalimides, Antimicrob Agents Chemother, 42(4), (1998) 916-920.
[96]. Graci J.D., Too K., Smidansky E.D., Edathil J.P., Barr E.W., Harki D.A., Galarraga J.E., Bollinger J.M., Jr., Peterson B.R., Loakes D., Brown D.M. , Cameron C.E., Lethal mutagenesis of picornaviruses with N-6-modified purine nucleoside analogues, Antimicrob Agents Chemother, 52(3), (2008) 971-979.
[97]. Crotty S. , Andino R., Implications of high RNA virus mutation rates: lethal mutagenesis and the antiviral drug ribavirin, Microbes and Infection, 4(13), (2002) 1301-1307.
[98]. Li Z.H., Li C.M., Ling P., Shen F.H., Chen S.H., Liu C.C., Yu C.K. , Chen S.H., Ribavirin reduces mortality in enterovirus 71-infected mice by decreasing viral replication, J Infect Dis, 197(6), (2008) 854-857.
[99]. Chen T.C., Chang H.Y., Lin P.F., Chern J.H., Hsu J.T., Chang C.Y. , Shih S.R., Novel antiviral agent DTriP-22 targets RNA-dependent RNA polymerase of enterovirus 71, Antimicrob Agents Chemother, 53(7), (2009) 2740-2747.
[100]. Zhu Q.C., Wang Y., Liu Y.P., Zhang R.Q., Li X., Su W.H., Long F., Luo X.D. , Peng T., Inhibition of enterovirus 71 replication by chrysosplenetin and penduletin, Eur J Pharm Sci, 44(3), (2011) 392-398.
[101]. Ho H.Y., Cheng M.L., Weng S.F., Chang L., Yeh T.T., Shih S.R. , Chiu D.T., Glucose-6-phosphate dehydrogenase deficiency enhances enterovirus 71 infection, J Gen Virol, 89(Pt 9), (2008) 2080-2089.
[102]. Ho H.Y., Cheng M.L., Weng S.F., Leu Y.L. , Chiu D.T., Antiviral effect of epigallocatechin gallate on enterovirus 71, J Agric Food Chem, 57(14), (2009) 6140-6147.
[103]. Tsou Y.L., Lin Y.W., Chang H.W., Lin H.Y., Shao H.Y., Yu S.L., Liu C.C., Chitra E., Sia C. , Chow Y.H., Heat shock protein 90: role in enterovirus 71 entry and assembly and potential target for therapy, PLoS One, 8(10), (2013) e77133.
[104]. Liu M.L., Lee Y.P., Wang Y.F., Lei H.Y., Liu C.C., Wang S.M., Su I.J., Wang J.R., Yeh T.M., Chen S.H. , Yu C.K., Type I interferons protect mice against enterovirus 71 infection, J Gen Virol, 86(Pt 12), (2005) 3263-3269.
[105]. Wang B., Xi X., Lei X., Zhang X., Cui S., Wang J., Jin Q. , Zhao Z., Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses, PLoS Pathog, 9(3), (2013) e1003231.
[106]. Lin C.W., Wu C.F., Hsiao N.W., Chang C.Y., Li S.W., Wan L., Lin Y.J. , Lin W.Y., Aloe-emodin is an interferon-inducing agent with antiviral activity against Japanese encephalitis virus and enterovirus 71, Int J Antimicrob Agents, 32(4), (2008) 355-359.
[107]. Shih S.R., Weng K.F., Stollar V. , Li M.L., Viral protein synthesis is required for Enterovirus 71 to induce apoptosis in human glioblastoma cells, J Neurovirol, 14(1), (2008) 53-61.
[108]. Shih S.R., Tsai K.N., Li Y.S., Chueh C.C. , Chan E.C., Inhibition of enterovirus 71-induced apoptosis by allophycocyanin isolated from a blue-green alga Spirulina platensis, J Med Virol, 70(1), (2003) 119-125.
[109]. Choi H.J., Lim C.H., Song J.H., Baek S.H. , Kwon D.H., Antiviral activity of raoulic acid from Raoulia australis against Picornaviruses, Phytomedicine, 16(1), (2009) 35-39.