Pham Thi Bich, Vu Thi Thu

Main Article Content

Abstract

This study was carried out to evaluate the effect of Cobalt chloride (CoCl2) on cardiac mitochondrial function in an in vitro model. In the study, H9C2 cardiomyocytes were cultured in a medium containing different concentrations of CoCl2. Cell viability, cardiolipin content, mitochondrial function, and mitochondrial oxidative stress were assessed by using Cell Counting Kit-8 and suitable fluorescence kits. The obtained data show that CoCl2 (200÷400 µM) induced cell death and decreased mitochondrial function of H9C2 cardiomyocytes. Particularly, CoCl2 at the dose of 300 µM significantly altered the values of mitochondrial membrane potential, H2O2 and O2- to 63.79±2.15%, 145.81±5.83% and 143.10±3.07% (of 100% control), respectively. Altogether, CoCl2 strongly induced cardiomyocyte death via altering mitochondrial function in a dose-dependent manner.

Keywords: H9C2, mitochondria, cell counting kit-8.

References

[1] G. L. Semenza, Hypoxia-inducible Factors in Physiology and Medicine, Cell, Vol. 148, No. 3, 2012, pp. 399-408, https://doi.org/10.1016/j.cell.2012.01.021.
[2] G. L. Semenza, P. H. Roth, H. M. Fang, G. L. Wang, Transcriptional Regulation of Genes Encoding Glycolytic Enzymes by Hypoxia-inducible Factor 1, Journal of Biological Chemistry, Vol. 269, No. 38, 1994, pp. 23757-23763, https://doi.org/10.1016/S0021-9258(17)31580-6.
[3] J. Aragonés, P. Fraisl, M. Baes, P. Carmeliet, Oxygen Sensors at the Crossroad of Metabolism, Cell Metabolism, Vol. 9, No. 1, 2009, pp. 11-22, https://doi.org/10.1016/j.cmet.2008.10.001.
[4] V. T. Thu, N. T. H. Yen, N. H. Tung, P. T. Bich, J. Han, H. K. Kim, Majonoside-R2 Extracted from Vietnamese Ginseng Protects H9C2 Cells Against Hypoxia/reoxygenation Injury Via Modulating Mitochondrial Function and Biogenesis, Bioorg Med Chem Lett, Vol. 36, 2021, pp. 127814, https://doi.org/10.1016/j.bmcl.2021.127814.
[5] N. T. H. Yen, B. T. V. Khanh, V. T. Hien, V. T. Thu (Effects of Carbonyl-cyanide M chlorophenylhydrazone on Mitochondrial Function of H9C2 Cells, VNU Journal of Science: Medical and Pharmaceutical Sciences, Vol. 33, 2017, pp. 27-32.
[6] N. T. H. Yen, D. T. Dau, P. T. Bich, V. T. Thu, Design and Evaluate the Effectiveness of Hypoxia Chamber Used in Ischemic Studies - myocardial Reperfusion in Vitro, Vietnam Journal of Physiology, Vol. 23, No. 3, 2019, pp. 1-8.
[7] A. C. G. J. Epstein, L. A. McNeill, K. S. Hewitson, J. O'Rourke, D. R. Mole, M. Mukherji, E. Metzen, M. I. Wilson et al., Egans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation, Cell, Vol. 107, No. 1, 2001, pp. 43-54,
https://doi.org/10.1016/s0092-8674(01)00507-4.
[8] F. Formenti, D. C. Teodosiu, Y. Emmanuel, J. Cheeseman, K. L. Dorrington, L. M. Edwards, S. M. Humphreys, T. R. Lappin, M. F. McMullin et al., Regulation of Human Metabolism by Hypoxia-inducible Factor, Proc Natl Acad Sci USA, Vol. 107, No. 28, 2010, pp. 12722-7, https://doi.org/10.1073/pnas.1002339107
[9] R. N. Foley, Emerging Erythropoiesis-stimulating Agents, Nat Rev Nephrol, Vol. 6, No. 4, 2010, pp. 218-23, https://doi.org/10.1038/nrneph.2010.19.
[10] A. Lan, X. Liao, L. Mo, C. Yang, Z. Yang, X. Wang, F. Hu, P. Chen, J. Feng et al., Hydrogen Sulfide Protects Against Chemical Hypoxia-induced Injury by Inhibiting ROS-activated ERK1/2 and p38MAPK Signaling Pathways in PC12 Cells, PLoS One, Vol. 6, No. 10, 2011, pp. e25921, https://doi.org/10.1371/journal.pone.0025921.
[11] S. Gallo, S. Gatti, V. Sala, R. Albano, P. Costelli, E. Casanova, P. M. Comoglio, T. Crepaldi Agonist Antibodies Activating the Met Receptor Protect Cardiomyoblasts from Cobalt Chloride-induced Apoptosis and Autophagy, Cell Death & Disease, Vol. 5, No. 4, 2014, pp. e1185-e1185, https://doi.org/10.1038/cddis.2014.155.
[12] K. Wu, W. Xu, Q. You, R. Guo, J. Feng, C. Zhang, W. Wu, Increased Expression of Heat Shock Protein 90 under Chemical Hypoxic Conditions Protects Cardiomyocytes Against Injury Induced by Serum and Glucose Deprivation, Int, J. Mol, Med, Vol. 30, No. 5, 2012, pp. 1138-44, https://doi.org/10.3892/ijmm.2012.1099.
[13] J. Dudek, Role of Cardiolipin in Mitochondrial Signaling Pathways, Frontiers in Cell and Developmental Biology, Vol. 5, No. 90, 2017, https://doi.org/10.3389/fcell.2017.00090.
[14] G. Paradies, V. Paradies, V. De Benedictis, F. M. Ruggiero, G. Petrosillo, Functional Role of Cardiolipin in Mitochondrial Bioenergetics, Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1837, No. 4, 2014, pp. 408-417,https:/doi.org/10.1016/j.bbabio.2013.10.006.