Nguyen Thu Huyen, Duong Minh Chau, Do Thi Xuan Phuong, Nguyen Thanh Liem, Than Thi Trang Uyen

Main Article Content


Extracellular vesicles (EVs) are emerging as a potential candidate for disease treatment due to their bioactive cargoes. Recently, mesenchymal stem cells (MSC)-derived EVs have shown their capacity to replace parental cells as their similar functions to MSCs. The therapeutic effects of EVs depend on their cargo, such as DNA, miRNA, proteins, and lipids. In this study, we expanded umbilical cord-derived MSCs (UCMSCs) for EV release. Additionally, we evaluated the expression level of several microRNAs in three EV populations, including apoptotic bodies (AB), microvesicles (MV), and exosomes (EX). Results showed that UCMSCs released three EV types: AB, MV, and EX into culture media. The three EV populations were different in morphology and size. Three EVs were detected to carry microRNAs, such as hsa-miR-320, hsa-miR-181b, and hsa-miR-140. Among these microRNAs, hsa-miR-140 expressed with the greatest level, followed by hsa-miR-181b and hsa-miR-320. The results of this study provide more knowledge about UCMSC-derived EV miRNAs in addition to reveal the potential role of UCMSC-EVs associated with detected miRNAs.

Keywords: Extracellular vesicles, umbilical cord-derived mesenchymal stem cells, microRNAs


[1] M. Dominici, K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, E. Horwitz, Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells, The International Society for Cellular Therapy Position Statement, Cytotherapy, Vol. 8, No. 4, 2006, pp. 315-317.
[2] S. Keshtkar, N. Azarpira, M. H. Ghahremani, Mesenchymal Stem Cell-derived Extracellular Vesicles: Novel Frontiers in Regenerative Medicine, Stem Cell Research Therapy, Vol. 9, No. 1, 2018, pp. 63.
[3] A. I. Caplan, J. E. Dennis, Mesenchymal Stem Cells as Trophic Mediators, Journal of Cellular Biochemistry, Vol. 98, No. 5, 2006, pp. 1076-1084.
[4] S. Rani, A. E. Ryan, M. D. Griffin, T. Ritter, Mesenchymal Stem Cell-derived Extracellular Vesicles: Toward Cell-free Therapeutic Applications, Molecular Therapy, Vol. 23, No. 5, 2015, pp. 812-823.
[5] S. Hao, O. Bai, J. Yuan, M. Qureshi, J. Xiang, Dendritic Cell-derived Exosomes Stimulate Stronger CD8+ CTL Responses and Antitumor Immunity than Tumor Cell-derived Exosomes, Cell Mol Immunol, Vol. 3, No. 3, 2006, pp. 205-211.
[6] U. T. Than, D. Guanzon, J. A. Broadbent, D. I. Leavesley, C. Salomon, T. J. Parker, Differential Expression of Keratinocyte-derived Extracellular Vesicle Mirnas Discriminate Exosomes from Apoptotic Bodies and Microvesicles, Frontiers in Endocrinology, Vol. 9, 2018, pp. 535.
[7] A. Michael, S. D. Bajracharya, P. S. Yuen, H. Zhou, R. A. Star, G. G. Illei, I. Alevizos, Exosomes from Human Saliva as a Source of MicroRNA Biomarkers, Oral diseases, Vol. 16, No. 1, 2010, pp. 34-38.
[8] A. K. Rupp, C. Rupp, S. Keller, J. C. Brase, R. Ehehalt, M. Fogel, G. Moldenhauer, F. Marmé, H. Sültmann, P. Altevogt, Loss of EpCAM Expression in Breast Cancer Derived Serum Exosomes: Role of Proteolytic Cleavage, Gynecologic Oncology, Vol. 122, No. 2, 2011, pp. 437-446.
[9] M. I. Zonneveld, A. R. Brisson, M. J. van Herwijnen, S. Tan, C. H. van de Lest, F. A. Redegeld, J. Garssen, M. H. Wauben, E. N. N. Hoen, Recovery of Extracellular Vesicles from Human Breast Milk is Influenced by Sample Collection and Vesicle Isolation Procedures, Journal of Extracellular Vesicles, Vol. 3, No. 1, 2014, pp. 24215.
[10] S. Keller, C. Rupp, A. Stoeck, S. Runz, M. Fogel, S. Lugert, H. D. Hager, M. A. Bakky, P. Gutwein, P. Altevogt, CD24 is a Marker of Exosomes Secreted into Urine and Amniotic Fluid, Kidney International, Vol. 72, No. 9, 2007, pp. 1095-1102.
[11] S. Xu, Z. Wang, Bone Marrow Mesenchymal Stem Cell-derived Exosomes Enhance Osteoclastogenesis During Alveolar Bone Deterioration in Rats, RSC Advances, Vlo. 7, No. 34, 2017, pp. 21153-21163.
[12] X. Rong, J. Liu, X. Yao, T. Jiang, Y. Wang, F. Xie, Human Bone Marrow Mesenchymal Stem Cells-derived Exosomes Alleviate Liver Fibrosis Through the Wnt/β-catenin Pathway, Stem Cell Research Therapy, Vol. 10, No. 1, 2019, pp. 98.
[13] J. Ding, X. Wang, B. Chen, J. Zhang, J. Xu, Exosomes Derived from Human Bone Marrow Mesenchymal Stem Cells Stimulated by Deferoxamine Accelerate Cutaneous Wound Healing by Promoting Angiogenesis, BioMed Research International, 2019.
[14] B. Zhang, M. Wang, A. Gong, X. Zhang, X. Wu, Y. Zhu, H. Shi, L. Wu, W. Zhu, H. Qian, HucMSC‐exosome Mediated‐Wnt4 Signaling is Required for Cutaneous Wound Healing, Stem Cells, Vol. 33, No. 7, 2015, pp. 2158-2168.
[15] B. Zhang, X. Wu, X. Zhang, Y. Sun, Y. Yan, H. Shi, Y. Zhu, L. Wu, Z. Pan, W. Zhu, Human Umbilical Cord Mesenchymal Stem Cell Exosomes Enhance Angiogenesis Through the Wnt4/β‐catenin Pathway, Stem Cells Translational Medicine, Vol. 4, No. 5, 2015, pp. 513-522.
[16] D. G. Phinney, M. F. Pittenger, Concise Review: MSC-derived Exosomes for Cell-free Therapy, Stem Cells, Vol. 35, No. 4, 2017, pp. 851-858,
[17] H. Zhang, S. Xu, X. Liu, MicroRNA Profiling of Plasma Exosomes from Patients with Ovarian Cancer using High-throughput Sequencing, Oncol Lett, Vol. 17, No. 6, 2019, pp. 5601-5607,
[18] D. S. Rubio, I. M. Burriel, Stability of Circulating Exosomal MiRNAs in Healthy Subjects, Sientific Reports, Vlo. 8, No. 1, 2018, pp. 10306,
[19] G. Qiu, G. Zheng, M. Ge, J. Wang, R. Huang, Q. Shu, J. Xu, Mesenchymal Stem Cell-derived Extracellular Vesicles Affect Disease Outcomes Via Transfer of MicroRNAs, Vol. 9, No. 1, 2018, pp. 320,