Kieu Trung Kien, Pham Thi Huyen Trang, Nguyen Thi Kim Thanh, Nguyen Tien Dat, Nguyen Lai Thanh, Hoang Thi My Hanh

Main Article Content

Abstract

Many species in the family Lycopodiaceae possess highly potential medical substances and are widely used as traditional medicines in the treatment of stroke, dementia. Hundreds of Lycopodium alkaloids were described and studied for their biological activities such as
anti-inflammatory, antioxidant, immunomodulatory, neuroprotective,… Various members of this family were found in Vietnam and were used as oral traditional medicine for a long time. However, there is a lack of toxicity studies on this subject. In this study, three alkaloid fractions from Huperzia serrata (Thunb.) Trevis, Lycopodium clavatum L. and Huperzia squarrosa (G. Forst.) Trevis were tested in two toxicity models: mouse primary neuronal cell (in vitro) and zebrafish (Danio rerio) embryos (in vivo). The IC50 values of Huperzia serrata (Thunb.) Trevis, Lycopodium clavatum L. and Huperzia squarrosa (G. Forst.) Trevis on the mouse primary neuronal cells were 0.839, 1.071 and 0.915 mg/ml and on the zebrafish embryo were 0.180, 0.281 and 0.198 mg/ml, respectively. Notably, three common types of maldevelopment: hemostasis, cardiac sac edema and tail defect were recorded; and the teratogenic index of Huperzia serrata (Thunb.) Trevis was 3.418, which indicated high teratogenic effect at embryo developmental stage. These data can be used as a reference in using the alkaloid fractions from these plants in the traditional medicine treatment system, especially when used with high concentration and in treating pregnant women.

Keywords: Lycopodiaceae, alkaloid, toxicity, neuronal cell, zebrafish embryo.

References

[1] D. L Bai, X. C Tang, X. C He, A. Huperzine, A Potential Therapeutic Agent for Treatment of Alzheimer’s Disease, Curr Med Chem, Vol. 7, No. 3, 2000, pp. 355-374, https://doi.org/10.2174/0929867003375281.
K. Hanif, M. Kumar, N. Singh, R. Shukla, Effect of Homeopathic Lycopodium Clavatum on Memory Functions and Cerebral Blood Flow in Memory-impaired Rats, Homeopathy, Vol. 104, No. 1, pp. 24-28, https://doi.org/10.1016/j.homp.2014.08.003.
[2] X. Li, M. Kang, N. Ma, T. Pang, Y. Zhang, H. Jin, Z. Yang, L. Song, Identification and Analysis of Chemical Constituents and Rat Serum Metabolites in Lycopodium Clavatum Using UPLC-Q-TOF/MS Combined with Multiple Data-Processing Approaches, Evid Based Complement Alternat Med, 2019, pp. 1-8, https://doi.org/10.1155/2019/5165029.
[3] S. Pathak, A. Banerjee, A. K. Bukhsh, Efficacy of Ethanolic Spore Extract of Lycopodium Clavatum in Reducing Induced Hepatotoxicity and Genotoxicity in Mice, Int. J. Biol Chem Sci, Vol. 4, No. 3, 2010, pp. 770-781, https://doi.org/10.4314/ijbcs.v4i3.60510.
[4] Z. M Qian, Y. Ke, A. Huperzine, Is it an Effective Disease-Modifying Drug for Alzheimer’s Disease? Front Aging Neurosci, Vol. 6, 2014, pp. 216, https://doi.org/10.3389/fnagi.2014.00216.
[5] I. Orhan, S. Terzioglu, B. Şener, α-Onocerin: An Acetylcholinesterase Inhibitor from Lycopodium clavatum, Planta Med, Vol. 69, No. 3, 2003,
pp. 265-267, https://doi.org/10.1055/s-2003-38489.
[6] J. Wu, H. Wang, Y. Ma, J. Jiang, R. Zhan, Y. Chen, Isolation of a New Lycodine Alkaloid from Lycopodium Japonicum, Nat Prod Res, Vol. 29, No. 8, 2015, pp. 735-738, https://doi.org/10.1080/14786419.2014.984184.
[7] T. Nilsu, W. Thaisaeng, W. Thamnarak, C. Eurtivong, A. Jumraksa, S. Thorroad, N. Khunnawutmanotham, S. Ruchirawat, N. Thasana, Three Lycopodium Alkaloids from Thai Club Mosses, Phytochemistry, Vol. 156, 2018, pp. 83-88, https://doi.org/10.1016/j.phytochem.2018.09.001.
[8] M. Xu, S. Heidmarsson, H. J. D. Boer, A. Kool, E. S. Olafsdottir, Ethnopharmacology of the Club Moss Subfamily Huperzioideae (Lycopodiaceae, Lycopodiophyta): A Phylogenetic and Chemosystematic Perspective, J. Ethnopharmacol, Vol. 245, 2019, https://doi.org/10.1016/j.jep.2019.112130.
[9] A. I Calderón, J. S. Williams, R. Sanchez, A. Espinosa, I. Valdespino, M. P. Gupta, Lycopodiaceae from Panama: A New Source of Acetylcholinesterase Inhibitors, Nat Prod Res, Vol. 27, No. 4-5, 2013, pp. 500-505, https://doi.org/10.1080/14786419.2012.701217.
[10] N. C. Nguyen, T. T. H. Nguyen, M. H. Tran, C. L. Tran, Anti-Cholinesterase Activity of Lycopodium Alkaloids from Vietnamese Huperzia Squarrosa (Forst.) Trevis, Molecules, Vol. 19, No. 11, 2014, pp. 19172-19179, https://doi.org/10.3390/molecules191119172.
[11] X. J. Wang, Y. B. Liu, L. Li, S. S. Yu, H. N. Lv, S. G. Ma, X. Q. Bao, D. Zhang, J. Qu, Y. Li, D. E. Lycojaponicumins, Two New Alkaloids from Lycopodium Japonicum, Org Lett, Vol. 14, No. 22, 2012, pp. 5688-5691, https://doi.org/10.1021/ol302701y.
[12] S. B. Udtayan, N. Thasana, N. Jarussophon, S. Ruchirawat, Serratene Triterpenoids and Their Biological Activities from Lycopodiaceae Plants, Fitoterapia, Vol. 136, 2019, pp. 104181, https://doi.org/10.1016/j.fitote.2019.104181.
[13] S. P. Patil, Recently Isolated Lycodine-type Lycopodium Alkaloids and Their Total Synthesis: a Review, Future, J. Pharm Sci, Vol. 6, No. 1, 2020, pp. 99, https://doi.org/10.1186/s43094-020-00108-z.
[14] A. V Pereira, M. B Gois, K. R. J. L Lera, M. M. M. Sapla, G. J F. Temporini, J. E. Bezerril, G. Z. Junior, F. N. Ferraz, S. S. da Silva, D. L. Aleixo, I. C. Costa, D. M. G. Sant’Ana, I. N. Da, C. S. M. D. Araujo, W. R. Pqvqnelli, Treatment with Lycopodium Clavatum 200dH Intensifies Kidney and Liver Injury in Mice Infected with Toxoplasma Gondii, Arch Immunol Ther Exp (Warsz), Vol. 68, No. 1, 2020, pp. 3, https://doi.org/10.1007/s00005-020-00567-5.
[15] A. Ferreira, M. Rodrigues, A. Fortuna, A. Falcão, G. Alves, Huperzine A from Huperzia Serrata: a Review of Its Sources, Chemistry, Pharmacology and Toxicology, Phytochem Rev, Vol. 15, No. 1, 2016, pp. 51-85, https://doi.org/10.1007/s11101-014-9384-y.
[16] C. X. Liu, C. Y. Li, C. C. Hu, Y. Wang, J. Lin, Y. H. Jiang, Q. Li, X. Xu, CRISPR/Cas9-induced Shank3b Mutant Zebrafish Display Autism-like Behaviors, Mol, Autism, Vol. 9, 2018, pp. 23, https://doi.org/10.1186/s13229-018-0204-x.
[17] D. A. Meshalkina, E. V. Kysil, J. E. Warnick, K. A. Demin, A. V. Kalueff, Adult Zebrafish in CNS Disease Modeling: A Tank That’s Half-full, Not Half-empty, and Still Filling, Lab, Anim, Vol. 46, 2017, pp. 378-387, https://doi.org/10.1038/laban.1345.
[18] D. D. Amico, X. Estivill, J. Terriente, Switching to Zebrafish Neurobehavioral Models: The Obsessive-compulsive Disorder Paradigm, Eur, J. Pharmacol, Vol. 759, 2015, pp. 142-150, https://doi.org/10.1016/j.ejphar.2015.03.027.
[19] C. Dark, C. Williams, M. A Bellgrove, Z. Hawi, R. J. B. Richardson, Functional Validation of CHMP7 as an ADHD Risk Gene, Transl, Psychiatry, Vol. 10, 2020, pp. 385, https://doi.org/10.1038/s41398-020-01077-w.
[20] B. D. Fontana, F. Franscescon, D. B. Rosemberg, W. H. J. Norton, A. V Kalueff, M. O Parker, Zebrafish Models for Attention Deficit Hyperactivity Disorder (ADHD), Neurosci, Biobehav, Rev, Vol. 100, 2019, pp. 9-18, https://doi.org/10.1016/j.neubiorev.2019.02.009.
[21] W. Bao, A. D. Volgin, E. T. Alpyshov, A. J. Friend, T. V. Strekalova, M. S. de Abreu, C. Collins, T. G. Amstislavskaya, K. A. Demin, A. V. Kalueff, Opioid Neurobiology, Neurogenetics and Neuropharmacology in Zebrafish, Neuroscience, Vol. 404, 2019, pp. 218-232, https://doi.org/10.1016/j.neuroscience.2019.01.045.
[22] J. T. Krook, E. Duperreault, D. Newton, M. S. Ross, T. J. Hamilton, Repeated Ethanol Exposure Increases Anxiety-like Behaviour in Zebrafish During Withdrawal, J. Peer, Vol. 7, 2019, pp. e6551, https://doi.org/10.7717/peerj.6551. eCollection 2019.
[23] T. E Müller, B. D. Fontana, K. T. Bertoncello, F. Franscescon, N. J, Mezzomo, J. Canzian, F. V. Stefanello, M. O. Parker, R. Gerlai, D. B. Rosemberg, Understanding the Neurobiological Effects of Drug Abuse: Lessons from zebrafish models, Prog, Neuropsychopharmacol, Biol, Psychiatry, Vol. 100, 2020, pp. 109873. https://doi.org/10.1016/j.pnpbp.2020.109873.
[24] D. Koehler, F. E Williams, Utilizing Zebrafish and Okadaic Acid to Study Alzheimer’s Disease, Neural Regen, Res, Vol. 13, 2018, pp. 1538-1541, https://doi.org/10.4103/1673-5374.237111.
[25] P. Bhattarai, M. I. Cosacak, V. Mashkaryan, S. Demir, S. D. Popova, N. Govindarajan, K. Brandt, Y. Zhang, W. Chang, K. Ampatzis, C. Kizil, Neuron-glia Interaction Through Serotonin-BDNF-NGFR Axis Enables Regenerative Neurogenesis in Alzheimer’s Model of Adult Zebrafish Brain, PLoS Biol, Vol. 18, 2020, pp. e3000585, https://doi.org/10.1371/journal.pbio.3000585.
[26] N. T. Lu, D. H. Nguyen, A. N. Sennikov, L. V. Averyanov, V. D. Truong, A. N. Kuznetsov, S. P. Kuznetsova, M. S. Nuraliev, Checklist of Lycopodiaceae in Vietnam with Three New Records and One Lectotypification, Phytotaxa, Vol. 452, No. 1, 2020, pp. 19-32, https://doi.org/10.11646/phytotaxa.452.1.2.
[27] T. A. M. Nguyen, V. D. Nong, T. V. Tran, N. T. Le, V. H. Hoang, V. T. Tran, T. C. Vu, Species Composition Of Lycopodiaceae Mirbel in Vietnam, Biol, Jour, Vol. 41, 2019, pp. 427-432, https://doi.org/10.15625/0866-7160/v41n2se1&2se2.14432.
[28] K. T. Dang, T. V. Dao, T. T. Bui, Two Lycopodium Alkaloids from the Aerial Parts of Huperzia Phlegmaria, Pharmacogn Res, Vol. 11, No. 4, 2019, pp. 396, https://doi.org/10.4103/pr.pr_82_19.
[29] S. Kaech, G. Banker, Culturing Hippocampal Neurons, Nat Protoc, Vol. 1, No. 5, 2006, 2406-2415, https://doi.org/10.1038/nprot.2006.356.
[30] Y. N. Huang, J. Y. Wang, Primary Neuron-glia Culture from Rat Cortex as a Model to Study Neuroinflammation in CNS Injuries or Diseases, BIO-Protoc, Vol. 6, No. 8, 2016, pp. 155. https://doi.org/10.21769/BioProtoc.1788.
[31] Y. shizuka, C. R. Bramham, A simple DMSO-based Method for Cryopreservation of Primary Hippocampal and Cortical Neurons, J. Neurosci Methods, Vol. 333, 2020, pp. 108578, https://doi.org/10.1016/j.jneumeth.2019.108578.
[32] S. Shabanipour, A. Dalvand, X. Jiao, M. R. Balaei, S. H. Chung, J. Kong, M. R. D. Bigio, H. Marzban, Primary Culture of Neurons Isolated from Embryonic Mouse Cerebellum, J. Vis Exp, Vol. 152, 2019, pp. 60168, https://doi.org/10.3791/60168.
[33] M. C. Jaimez, E. Tagliatti, P. R. F. Mendonca, E. Nicholson, U. Vivekananda, D. M. Kullmann, K. E. Volynski, Preparation of Dissociated Mouse Primary Neuronal Cultures from Long-term Cryopreserved Brain Tissue, J. Neurosci Methods, Vol. 330, 2020, 108452, https://doi.org/10.1016/j.jneumeth.2019.108452.
[34] F. Bahrami, M. Janahmadi, Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture, Iran Biomed, J. IBJ, ISSN 1028-852X, Published online 1996, https://doi.org/10.6091/IBJ.11242.2013A.
[35] Lupton, The Art of Writing a Scientific Article, J. Sci, Commun, Vol. 163, No. 2, 2010, pp. 1-7, https://doi.org/10.1016/j.Sc.2010.00372.