Tien Phi, Cao Cuong Ngo, Thi Thanh Loi Nguyen, Thi Thu Hong Do, The Anh Luu, Ngoc Tung Quach

Main Article Content


The colonization and growth of harmful fungi on the glass surface have caused irreversible damage to optical quality. Harmful grades observed on the optical instruments depend on the biological characteristics of fungi that vary from species to species. The present study focused on isolation, identification, and evaluation of glass biodeterioration properties such as organic acid and exopolysaccharide production of fungal strain Chaetomium globosum TTHF1-3 isolated from lens of optical instrument collected at Thai Hoa, Nghe An province. Under microscopic observation, the fungal strain TTHF1-3 cells showed brown or dark brown color perithecia and ascospores. Based on ITS sequence analyses, the strain TTHF1-3 was found to share 100% sequence identity with that of C. globosum species deposited on GenBank (NCBI). A in situ biodeterioration test exhibited the hyphal surface coverage of strain TTHF1-3 reaching 29.77±1.15%, which corresponded to harmful grade 2 based on the ISO 9022-11:2015 criteria. When incubated on MT4 medium containing glucose and mineral elements, the pH values of C. globosum TTHF1-3 culture were significantly decreased from 6.5 to 3.12±0.12, which was in contrast to MT1 medium. In addition, fungal strain TTHF1-3 was able to produce 8.2±0.3 g/L exopolysaccharides. The findings in the present study confirmed that C. globosum TTHF1-3 was harmful fungus responsible for glass biodeterioration.

Keywords: Aspergillus, biodeterioration, Chaetomium globosum, fungi, ITS sequence, optical glass


[1] Daniela Pinna. Biological Growth on Stone Heritage Objects: Methods, Products, Applications, and Perspectives. CRC Press, 2017.
[2] Watkins RD, Mould in optical instruments. Community eye health 16 (2003) 28.
[3] S. Bindschedler, G. Cailleau and E. Verrecchia, Role of Fungi in the Biomineralization of Calcite, Minerals 6 (2016) 41. https://doi.org/10.3390/min6020041
[4] A Rodrigues, SG Patricio, AZ Miller et al., Fungal biodeterioration of stained-glass windows. International Biodeterioration & Biodegradation 90 (2014) 152-160. https://doi.org/10.1016/j.ibiod.2014.03.007
[5] GM Gadd, Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological research 111 (2007) 3–49.
[6] Z Li, L Liu, J Chen, H Teng, Cellular dissolution at hypha- and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering.  Geology 44 (2016):G37561.1  DOI: 10.1130/G37561.1
[7] H. Hocheng, M. Chakankar, U. Jadhav, Biohydrometallurgical Recycling of Metals from Industrial Wastes. CRC Press, 2017,
[8] M. Garcia-Vallès, D. Gimeno-Torrente, S. Martínez-Manent, I.L. Fernández-Turiel. Medieval stained glass in a Mediterranean climate: Typology, weathering and glass decay, and associated biomineralization processes and products. Am. Mineral. 88 (2003) 1996–2006
[9] G. Piñar, M. Garcia-Valles, D. Gimeno-Torrente, J.L. Fernandez-Turiel, J. Ettenauer, K. Sterflinger. Microscopic, chemical, and molecular-biological investigation of the decayed medieval stained window glasses of two Catalonian churches. Int. Biodeter. 
Biodegr. 84 (2013) 388–400.
[10] M. Gong, P. Du, X. Liu, and C. Zhu. An effective method for screening and testing the true phosphate-solubilizing fungus that enhances corn growth. Journal of Agricultural Science, 6(2014) 60–70.
[11] S. Gaind. Phosphate dissolving fungi: Mechanism and application in alleviation of salt stress in wheat. Microbiological Research 193 (2016) 94-102
[12] M. Fomina, S. Hillier, J.M Charnock, K. Melville et al., Role of oxalic acid overexcretion in transformations of toxic metal minerals by Beauveria caledonica. Appl Environ Microbiol 71 (2005) 371– 381.
[13] SM Abdel-Aziz, HA Hamed, FE Mouafi, AS Gad, Acidic pH-shock induces the production of an exopolysaccharide by the fungus Mucor rouxii. Util Beet Molasses 5 (2012) 52–61
[14] M. Patel, U. Patel, S. Gupte, Production of Exopolysaccharide (EPS) and its Application by New Fungal Isolates SGMP1 and SGMP2. International Journal of Agriculture, Environment & Biotechnology 7 (2014) 511-523.
[15] O. Salvadori, AC Municchia, The Role of Fungi and Lichens in the Biodeterioration of Stone Monuments. The Open Conference Proceedings Journal 7 (2015) 39-54. Doi: 10.2174/2210289201607020039.
[16] F. Villa, PS Stewart et al., Subaerial Biofilms on Outdoor Stone Monuments: Changing the Perspective Toward an Ecological Framework, BioScience. 66 (2016) 285–294, https://doi.org/10.1093/biosci/biw006
[17] M. Osińska-Jaroszuk, A. Jarosz-Wilkołazka et al., Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties. World J Microbiol Biotechnol 31 (2015) 1823–1844.
[18] A.M. C. Pinto, T. Palomar, L.C. Alves, et al., Fungal biodeterioration of stained-glass windows in monuments from Belém do Pará (Brazil). International biodeterioration & Biodegradation 138 (2019) 106-113
[19] M.A.M. Mansour, N. S. Abdel-Rahim and M. Z.M. Salem, Study of the Biodeterioration of some Stained Glasses by the Fungus Stemphylium botryosum. Current Science International 05 (2016) 119-129. ISSN 2077-4435.
[20] F. Pinzari and M. Montanari, Mould growth on library materials stored in compactus-type shelving units (Chapter 11) In: Abdul-Wahab Al-Sulaiman SA, editor. Sick building syndrome in public buildings and workplaces. Burlington: Elsevier 2011.
[21] K. Sterflinger and G. Piñar. Microbial deterioration of cultural heritage and works of art - tilting at windmills? Appl Microbiol Biotechnol. 97(2013) 9637–9646. doi: 10.1007/s00253-013-5283-1
[22] K.A. Seifert, W. Gams, The genera of Hyphomycetes-2011 update, Persoonia 27 (2011): 119-129.
K. Ihrmark, I.T.M. Bödeker, K. Cruz-Martinez, H. Friberg, A. Kubartova, J. Schenck, Y. Strid, J. Stenlid, M. Brandström-Durling, K.E. Clemmensen, B.D. Lindahl. New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiology Ecology, 82(3), (2012): 666–677.
[23] K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar, MEGA6: Molecular evolutionary genetics analysis version 6.0 (2013), Mol. Biol. Evol. 30(12): 2725-2729. Doi:10.1093/molbev/mst197
[24] J. Felsenstein, Phylogenies and the comparative method, Am. Nat. 125 (1985): 1-15.
[25] F. Chevenet, C. Brun, A.L. Banuls, B. Jacq, R. Christen. TreeDyn: towards dynamic graphics and annotations for analyses of trees, BMC Bioinformatics, 7 (2006): 439.
M. Bartosik, Z. Zakowska, K. Cedzinska, K. Rozniakowski. Biodeterioration of optical glass induced by lubricants used in 
optical instruments technology. Pol. J. Microbiol. 59 (2010): 295–300. 

[27] N. Liaud, C. Ginies, D. Navarro, N. Fabre, S. Crapart, I. Herpoel-gimbert, A. Levasseur, S. Raouche, J.C. Sigoillot. Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi. Fungal Biology and Biotechnology 1 (2014):1-10
[28] J. Jaroszuk-Sciseł, A. Nowak, I. Komaniecka, A. Choma, A. Jarosz-Wilkołazka, M. Osinska-Jaroszuk, R. Tys ́kiewicz, A. Wiater, J. Rogalski, Differences in production, composition, and antioxidant activities of exopolymeric substances (EPS) obtained from 
cultures of endophytic Fusarium culmorum strains with different effects on cereals, Molecules 25 (2020) 616. Doi:10.3390/molecules25030616
[29] Crawford B, Pakpour S, Kazemian N, Klironomos J, Stoeffler K, Rho D, Denault J, Milani AS. Effect of fungal deterioration on physical and mechanical properties of Hemp and flax natural fiber composites. Materials 10 (2017): 1252; doi:10.3390/ma10111252
[30] Matthew R. Fogle, David R. Douglas, Cynthia A. Jumper and David C. Straus. Growth and Mycotoxin Production by Chaetomium globosum Is Favored in a Neutral pH, Int. J. Mol. Sci. 9 (2008), 2357-2365; DOI: 10.3390/ijms9122357
[31] Salo JM, Kedves O, Mikkola R, Kredics L, Andersson MA, Kurnitski J, Salonen H. Detection of Chaetomium globosum, Ch. cochliodes and Ch. rectangulare during the Diversity Tracking of Mycotoxin-Producing Chaetomium-like Isolates Obtained in Buildings in Finland. Toxin 12 (2020) 443. https://doi.org/10.3390/toxins12070443
[32] Ngo CC, Nguyen QH, Nguyen TH, Quach NT, Dudhagara P, Vu THN, Le TTX, Le TTH, Do TTH, Nguyen VD, et al., Identification of fungal community associated with deterioration of optical observation instruments of museums in Northern Vietnam. Appl Sci. 11 (2021) 5351. https://doi.org/10.3390/app11125351.
[33] ISO 9022-11:2015, Optics and photonics-Environmental test methods-Part 11: Mould growth.
[34] Weaver, J.L.; DePriest, P.T.; Plymale, A.E.; Pearce, C.I.; Arey, B.; Koestler, R.J. Microbial interactions with silicate glasses. NPJ Mater. Degrad. 2021, 5, 11. 

[35] Magnuson, J.K.; Lasure, L.L. Organic acid production by filamentous fungi. In Advances in Fungal Biotechnology for Industry, 
Agriculture, and Medicine; Tkacz, J.S., Lange, L., Eds.; Springer US: Boston, MA, USA, 2004; pp. 307–340. 

[36] Ngo Cao Cuong, Dang Thi Thuy Duong, Vu Thi Hanh Nguyen, Phi Quyet Tien, Nguyen Van Duc, Nguyen Thu Hoai. Biologiacl characteristic of deteriorating fungi isolated from marine military observation devices at An Duong, Hai Phong. Prceedings of national conference of biotechnology 2018.