Structure and Bonding in the Complex of Zinc with 4,4’-Diacetylcurcumin
Main Article Content
Abstract
Revised 28 March 2022; Accepted 14 July 2022
Abstract: The structure and bonding situation in the complex of zinc with 4,4’-diacetylcurcumin and methanol ligands, [Zn(L)2(CH3OH)2], were examined by DFT calculations with the levels of TPSSH/def2-SVP and TPSSH/def2-TZVP in gas phase and methanol solvation. For each phase, four isomers with octahedral geometrical structures were found. The complexes were stabilized by Zn-O metal-ligand bondings and the support of hydrogen bondings. The bonding characters were analyzed in detail by the QTAIM and NBO theories. The study contributes to a deeper understanding of the structure and electron properties of the [Zn(L)2(CH3OH)2] complex that was experimentally synthesized and predicted to have significant antiproliferative activities for the human MCF-7 breast and HepG2 liver cancer cells.
References
[2] A. Goel, A. B. Kunnumakkara, B. B. Aggarwal, Curcumin as Curecumin: From Kitchen to Clinic, Biochemical Pharmacology, Vol. 75, No. 4, 2008, pp. 787809, https://doi.org/10.1016/j.bcp.2007.08.016.
[3] M. M. Yallapu, M. Jaggi, S. C. Chauhan, Curcumin Nanoformulations: a Future Nanomedicine for Cancer, Drug Discovery Today, Vol. 17, No. 1, 2012, pp. 71-80, https://doi.org/10.1016/j.drudis.2011.09.009.
[4] P. Anand, A. B. Kunnumakkara, R. A. Newman, B. B. Aggarwal, Bioavailability of Curcumin: Problems and Promises, Molecular Pharmaceutics, Vol. 4, No. 6, 2007, pp. 807-818, https://doi.org/10.1021/mp700113r.
[5] S. Wanninger, V. Lorenz, A. Subhan, F. T. Edelmann, Metal Complexes of Curcumin - Synthetic Strategies, Structures and Medicinal Applications, Chemical Society Reviews, Vol. 44, No. 15, 2015, pp. 4986-5002,
https://doi.org/10.1039/c5cs00088b.
[6] C. T. Pham, T. T. Pham, H. H. Nguyen, T. N. Trieu, Syntheses, Structures, and Bioactivities Evaluation of some Transition Metal Complexes with 4,4’-Diacetylcurcumin, Zeitschrift fur Anorganische und Allgemeine Chemie, Vol. 646, No. 11-12, 2020, pp. 495-499, https://doi.org/10.1002/zaac.202000088.
[7] H. H. Tran, T. H. Nguyen, T. T. Tran, H. D. Vu, H. M. T. Nguyen, Structures, Electronic Properties, and Interactions of Cetyl Alcohol with Cetomacrogol and Water: Insights from Quantum Chemical Calculations and Experimental Investigations, ACS Omega, Vol. 6, No. 32, 2021, pp. 20975-20983, https://doi.org/10.1021/acsomega.1c02439.
[8] R. Z. Liao, X. C. Li, P. E. M. Siegbahn, Reaction Mechanism of Water Oxidation Catalyzed by Iron Tetraamido Macrocyclic Ligand Complexes - A DFT Study, European Journal of Inorganic Chemistry, No. 4, 2014, pp. 728-741,
https://doi.org/10.1002/ejic.201300710.
[9] X. Zhao, M. Chen, DFT Study on the Influence of Electric Field on Surface-enhanced Raman Scattering from Pyridine–metal Complex, Journal of Raman Spectroscopy, Vol. 45, No. 1, 2014, pp. 62-67,
https://doi.org/10.1002/jrs.4422.
[10] A. C. Ekennia, D. C. Onwudiwe, L. O. Olasunkanmi, A. A. Osowole, E. E. Ebenso, Synthesis, DFT Calculation, and Antimicrobial Studies of Novel Zn(II), Co(II), Cu(II), and Mn(II) Heteroleptic Complexes Containing Benzoylacetone and Dithiocarbamate, Bioinorganic Chemistry and Applications, 2015, pp. 789063,
https://doi.org/ 10.1155/2015/789063.
[11] N. Huu Tho, T. T. Tu, T. M. Nhan, P. H. Cam, P. T. Thi, The Geometries and Stabilities of Neutral and Anionic Vanadium-Doped Germanium Clusters VGen0/-(n = 9 - 13): A Density Functional Theory Investigation, VNU Journal of Science: Natural Sciences and Technology, Vol. 35 No. 1, 2019, pp. 72-80, https://doi.org/10.25073/2588-1140/vnunst.4827.
[12] T. Weymuth, E. P. A. Couzijn, P. Chen, M. Reiher, New Benchmark Set of Transition-Metal Coordination Reactions for the Assessment of Density Functionals, Journal of Chemical Theory and Computation, Vol. 10, No. 8, 2014, pp. 3092-3103, https://doi.org/10.1021/ct500248h.
[13] N. Huu Tho, N. T. Trung, the Interaction of Adenine with Zn12O12 Cluster from Density Functional Theory, VNU Journal of Science: Natural Sciences and Technology, Vol. 36, No. 3, 2020, pp. 24-29,
https://doi.org/10.25073/2588-1140/vnunst.5002.
[14] J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Climbing the Density Functional Ladder: Nonempirical Meta--Generalized Gradient Approximation Designed for Molecules and Solids, Phys. Rev. Lett, Vol. 91, No. 14, 2003, pp. 146401, https://doi.org/10.1103/PhysRevLett.91.146401.
[15] V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew, Comparative Assessment of a New Nonempirical Density Functional: Molecules and Hydrogen-bonded Complexes, The Journal of Chemical Physics, Vol. 119, No. 23, 2003,
pp. 12129-12137, https://doi.org/10.1063/1.1626543.
[16] M. Bühl, C. Reimann, D. A. Pantazis, T. Bredow, F. Neese, Geometries of Third-row Transition-metal Complexes from Density-Functional Theory, Journal of Chemical Theory and Computation, Vol. 4, No. 9, 2008,
pp. 1449-1459, https://doi.org/10.1021/ct800172j.
[17] K. P. Jensen, Bioinorganic Chemistry Modeled with the TPSSh Density Functional, Inorganic Chemistry, Vol. 47, No. 22, 2008, pp. 10357-10365, https://doi.org/10.1021/ic800841t.
[18] A. Hoffmann, M. Rohrmüller, A. Jesser, I. dos Santos Vieira, W. G. Schmidt, S. Herres-Pawlis, Geometrical and Optical Benchmarking of Copper(II) Guanidine–quinoline Complexes: Insights from TD-DFT and Many-body Perturbation Theory (part II), Journal of Computational Chemistry, Vol. 35, No. 29, 2014, pp. 2146-2161,
https://doi.org/10.1002/jcc.23740.
[19] P. Rydberg, L. Olsen, The Accuracy of Geometries for Iron Porphyrin Complexes from Density Functional Theory, The Journal of Physical Chemistry A, Vol. 113, No. 43, 2009, pp. 11949-11953, https://doi.org/10.1021/jp9035716.
[20] M. J. Frisch et al., Gaussian 09 Revision C.01, Gaussian Inc. Wallingford CT., Computer program, 2010.
[21] T. Lu, F. Chen, Multiwfn: A Multifunctional Wavefunction Analyzer, Journal of Computational Chemistry, Vol. 33, No. 5, 2012, pp. 580-592, https://doi.org/ 10.1002/jcc.22885.
[22] F. Jensen, An Introduction to Computational Chemistry, 3rd edition, Wiley, 2017.
[23] P. Geerlings, F. De Proft, W. Langenaeker, Conceptual Density Functional Theory, Chemical Reviews, Vol. 103, No. 5, 2003, pp. 1793-1874, https://doi.org/10.1021/cr990029p.
[24] M. A. Addicoat, G. F. Metha, T. W. Kee, Density Functional Theory Investigation of Cu(I)- and Cu(II)-curcumin Complexes, Journal of Computational Chemistry, Vol. 32, No. 3, 2011, pp. 429-438,
https://doi.org/10.1002/jcc.21631.
[25] M. Duan, P. Li, H. Zhao, F. Xie, J. Ma, Organic Compounds of Actinyls: Systematic Computational Assessment of Structural and Topological Properties in [AnO2(C2O4)n](2n−2)– (An = U, Np, Pu, Am; n = 1–3) Complexes, Inorganic Chemistry, Vol. 58, No. 5, 2019, pp. 3425-3434, https://doi.org/10.1021/acs.inorgchem.8b03538.
[26] M. Usman et al., Structural, Spectroscopic, and Chemical Bonding Analysis of Zn(II) Complex [Zn(sal)](H2O): Combined Experimental and Theoretical (NBO, QTAIM, and ELF) Investigation, Crystals, Vol. 10, No. 4, 2020,
pp. 259, https://doi.org/10.3390/cryst10040259.
[27] R. F. W. Bader, A Quantum Theory of Molecular Structure and its Applications, Chemical Reviews, Vol. 91, No. 5, 1991, pp. 893-928, https://doi.org/10.1021/cr00005a013.
[28] P. R. Mallinson, K. Woźniak, G. T. Smith, K. L. McCormack, A Charge Density Analysis of Cationic and Anionic Hydrogen Bonds in a Proton Sponge Complex, Journal of the American Chemical Society, Vol. 119, No. 47, 1997,
pp. 11502-11509, https://doi.org/10.1021/ja971940v.
[29] P. L. A. Popelier, P. Popelier, Atoms in Molecules: An Introduction, Prentice Hall, 2000.
[30] G. A. Jeffrey, G. A. Jeffrey, An introduction to hydrogen bonding, Oxford University Press New York, 1997.
[31] S. J. Grabowski, Hydrogen bonding: new insights, Springer, Dordrecht, 2006.
[32] E. Espinosa, E. Molins, C. Lecomte, Hydrogen Bond Strengths Revealed by Topological Analyses of Experimentally Observed Electron Densities, Chemical Physics Letters, Vol. 285, No. 3, 1998, pp. 170-173,
https://doi.org/10.1016/S0009-2614(98)00036-0.