Ho Cong Hau, Le Thi Tu Quyen, Ngo Thi Hong Nhung, Ngo Vuong Hoang, Nguyen Truong An, Nguyen Phi Hung, Nguyen Tien Trung

Main Article Content

Abstract

Eight stable structures of nHCHO∙∙∙nH2O (n=1-3) were observed on potential surface energy at the MP2/aug-cc-pVDZ level of theory. All complexes were mainly stabilized by O-H∙∙∙O hydrogen bond and an additional contribution of Csp2-H∙∙∙O one. The larger positive cooperativity when adding H2O as compared to HCHO molecule is the most important factor in complex stabilization. The obtained results show that the O-H∙∙∙O is red-shifting hydrogen bond while Csp2-H∙∙∙O belongs to blue-shifting hydrogen bond. It is remarkable that an addition of H2O/HCHO into the binary system leads a Csp2-H bond contraction and an increase of its stretching frequency in Csp2-H∙∙∙O hydrogen bond, in which the larger marnitude of its blue-shifting enhancement is found as adding H2O molecule. This result is mainly governed by a decrease of electron density at σ*(Csp2-H) orbital and an increase in the s-character percentage of the Csp2 (Csp2-H).

Keywords: Blue-shifting hydrogen bond, ternary systems, quaternary systems, formaldehyde.

References

[1] U L. Pauling, The Nature of the Chemical Bond, Application of Results Obtained from the Quantum Mechanics and from a Theory of Paramagnetic Susceptibility to the Structure of Molecules, J. Am, Chem. Soc., Vol. 53, 1931, pp. 1367-1400.
[2] G. A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures, Springer Science and Business Media, 2012.
[3] V. H. Tu, N. T. T. Trang, N. T. Trung, Theoretical Study on Interactions of Cytosine with Guanine: Structure, Stability, Hydrogen Bond, Vietnam, J. Chem., Vol. 54(5e1,2), 2016, pp. 160-165 (in Vietnamese).
[4] S. J. Grabowski, Hydrogen Honding: New Insights, Springer, 2006.
[5] G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford university press New York., 1997.
[6] N. T. Trung, Theoretical Study of Blue-Shifting and Red-shifting Hydrogen Bond, Dihydrogen Bond Using Quantum Chemical Methods, Doctoral Thesis in Chemistry - Hanoi National University of Education, 2009 (in Vietnamese).
[7] N. T. Trung, P. N. Khanh, A. J. P. Carvalho, N. M. Tho, Remarkable Shifts of Csp2-H and O-H Stretching Frequencies and Stability of Complexes of Formic Acid with Formaldehydes and Thioformaldehydes, J. Comput. Chem., Vol. 40, 2019, pp. 1387-1400.
[8] B. Reimann, K. Buchfold, S. Vaupel, B. Brutschy, Z. Havlas, V. Spirko et al., Improper, Blue-Shifting Hydrogen Bond between Fluorobenzene and Fluoroform, J. Phys. Chem. A, Vol. 65, 2001, pp. 5560-5556.
[9] P. Hobza, Z.Havlas, Blue-Shifting Hydrogen Bonds, Chem. Rev., Vol. 100, 2000, pp. 4253-4264.
[10] J. Joseph, E. D. Jemmis, Red−, Blue−, or No−Shift in Hydrogen Bonds: A Unified Explanation, J. Am. Chem. Soc., Vol. 129, 2007, pp. 4620-4632.
[11] P. Hobza, P. Vladimr, L. S. Heinrich, W.S. Edward. Anti_Hydrogen Bond in the Benzen Dimer and Other Carbon Proton Donor Complexes, J. Phys. Chem. A, Vol. 102, 1998, pp. 2501-2504.
[12] B. Oliveira, R. de Araújo, M. Ramos, A Theoretical Study of Blue-Shifting Hydrogen Bonds in π Weakly Bound Complexes, J. Mol. Struct., Vol. 908, 2009, pp. 79-83.
[13] B. Reimann, K. Buchhold, S. Vaupel, B. Brutschy, Z. Havlas, V. Špirko, P. Hobza, Improper, Blue-Shifting Hydrogen Bond between Fluorobenzene and Fluoroform, J. Phys. Chem. A, Vol. 105, 2001, pp. 5560-5566.
[14] P. Hobza, Z. Havlas, The Fluoroform⋯Ethylene Oxide Complex Exhibits a C–H⋯O Anti-Hydrogen Bond, Chem. Phys. Lett., Vol. 303, 1999, pp. 447-452.
[15] P. D. H. Nhung, P. T. Nam, N. T. Trung, An Insight into Improper Hydrogen Bond of C-H···N Type in Complexes of Chloroform with Hydrogen Cyanide and its Flouro Derivative, Journal of Science - Quy Nhon University, Vol. 14, 2020, pp. 15-24.
[16] N. N Tri, N. T. H. Man, N. L. Tuan, N. T. T. Trang, D. T. Quang, N. T. Trung, Structure, Stability and Interactions in the Complexes of Carbonyls with Cyanides, Theor. Chem. Acc., Vol. 136, 2016, pp. 1-12.
[17] N. T. Trung, N. P. Hung, T. T. Hue. M. T, Nguyen. Existence of both Blue-Shifting Hydrogen Bond and Lewis Acid–Base Interaction in the Complexes of Carbonyls and Thiocarbonyls with Carbon Dioxide, Phys. Chem. Chem. Phys, , Vol. 13, 2011, pp. 14033-14042.
[18] A. K. Chandra, T. Zeegers-Huyskens, Theoretical Investigation of the Cooperativity in CH3CHO·2H2O, CH2FCHO·2H2O, and CH3CFO·2H2O Systems, J. At. Mol. Phys., Vol. 2012, 2012, pp. 1-8.
[19] N. T. T. Cuc, H. Q. Dai, N. T. A. Nhung, N. P. Hung, N. T. Trung, Roles of H2O to Hydrogen Bonds, Structure and Strength of Complexes, of CH3CHS and H2O, Vietnam J. Chem., Vol. 57, 2019, pp. 425-432.
[20] C. A. Hampel, Encyclopedia of the ChemicalElements, New York: Reinhold Book Corporation, 1968.
[21] H. Guo, N. Gresh, B. P. Roques, D. R. Salahub, Many-Body Effects in Systems of Peptide Hydrogen-Bonded Networks and their Contributions to Ligand Binding: A Comparison of the Performances of DFT and Polarizable Molecular Mechanics, J. Phys. Chem. B, Vol. 104, 2000, pp. 9746-9754.
[22] R. Wieczorek, J. J. Dannenberg, H-Bonding Cooperativity and Energetics of α-Helix Formation of Five 17-Amino Acid Peptides, J. Am. Chem. Soc., Vol. 125, 2003, pp. 8124-8129.
[23] J. Kriz, J. Dybal, J. Brus, Cooperative Hydrogen Bonds of Macromolecules, 2. Two-Dimensional Cooperativity in the Binding of Poly(4-vinylpyridine) to Poly(4-vinylphenol), J. Phys. Chem. B, Vol. 110, 2006, pp. 18338-18346.
[24] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Pople, Gaussian 09 (Revision B.01), Wallingford CT, 2009.
[25] F. Madison, GenNBO 5.G, Theoretical Chemistry Institute, University of Wisconsin, 2001.
[26] T. A. Keith, T.K. Gristmil, AIMAll (Version 19.10.12) Software, Overland Park KS, USA, 2019.
[27] I. Mata, I. Alkorta, E. Espinosa, E. Molins, Relationships between Interaction Energy, Intermolecular Distance and Electron Density Properties in Hydrogen Bonded Complexes under External Electric Fields, Chem. Phys. Lett.,
Vol. 507, 2011, pp. 185-189.
[28] A. Karpfen, E. S. Kryachko, Blue-Shifted A−H Stretching Modes and Cooperative Hydrogen Bonding, 1. Complexes of Substituted Formaldehyde with Cyclic Hydrogen Fluoride and Water Clusters. J. Phys. Chem. A, Vol. 111, 2007, pp. 8177-8187.
[29] I. Rozaz, I. Alkorta, J. Elguero, Behavior of Ylides Containing N, O, and C Atoms as Hydrogen Bond Acceptors, J. Am. Chem. Soc., Vol. 122, 2000, pp. 11154-11161.
[30] I. Alkorta, I. Rozaz. J. Elguero, Non-Conventional Hydrogen Bonds, J. Am. Chem. Soc. Rev., Vol. 27, 1998, pp. 163-170.
[31] Q. Li, X. An, B. Gong, J. Cheng, Cooperativity between O–H∙∙∙O and C–H∙∙∙O Hydrogen Bonds Involving Dimethyl Sulfoxide-H2O-H2O Complex, J. Phys. Chem. A, Vol. 111, 2007, pp. 10166-10169.