A Study on Structure, Stability, Cooperativity and Hydrogen Bond in the Complexes of nHCHO and nH2O (n=1-3) by Quantum Chemical Method
Main Article Content
Abstract
Eight stable structures of nHCHO∙∙∙nH2O (n=1-3) were observed on potential surface energy at the MP2/aug-cc-pVDZ level of theory. All complexes were mainly stabilized by O-H∙∙∙O hydrogen bond and an additional contribution of Csp2-H∙∙∙O one. The larger positive cooperativity when adding H2O as compared to HCHO molecule is the most important factor in complex stabilization. The obtained results show that the O-H∙∙∙O is red-shifting hydrogen bond while Csp2-H∙∙∙O belongs to blue-shifting hydrogen bond. It is remarkable that an addition of H2O/HCHO into the binary system leads a Csp2-H bond contraction and an increase of its stretching frequency in Csp2-H∙∙∙O hydrogen bond, in which the larger marnitude of its blue-shifting enhancement is found as adding H2O molecule. This result is mainly governed by a decrease of electron density at σ*(Csp2-H) orbital and an increase in the s-character percentage of the Csp2 (Csp2-H).
References
[2] G. A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures, Springer Science and Business Media, 2012.
[3] V. H. Tu, N. T. T. Trang, N. T. Trung, Theoretical Study on Interactions of Cytosine with Guanine: Structure, Stability, Hydrogen Bond, Vietnam, J. Chem., Vol. 54(5e1,2), 2016, pp. 160-165 (in Vietnamese).
[4] S. J. Grabowski, Hydrogen Honding: New Insights, Springer, 2006.
[5] G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford university press New York., 1997.
[6] N. T. Trung, Theoretical Study of Blue-Shifting and Red-shifting Hydrogen Bond, Dihydrogen Bond Using Quantum Chemical Methods, Doctoral Thesis in Chemistry - Hanoi National University of Education, 2009 (in Vietnamese).
[7] N. T. Trung, P. N. Khanh, A. J. P. Carvalho, N. M. Tho, Remarkable Shifts of Csp2-H and O-H Stretching Frequencies and Stability of Complexes of Formic Acid with Formaldehydes and Thioformaldehydes, J. Comput. Chem., Vol. 40, 2019, pp. 1387-1400.
[8] B. Reimann, K. Buchfold, S. Vaupel, B. Brutschy, Z. Havlas, V. Spirko et al., Improper, Blue-Shifting Hydrogen Bond between Fluorobenzene and Fluoroform, J. Phys. Chem. A, Vol. 65, 2001, pp. 5560-5556.
[9] P. Hobza, Z.Havlas, Blue-Shifting Hydrogen Bonds, Chem. Rev., Vol. 100, 2000, pp. 4253-4264.
[10] J. Joseph, E. D. Jemmis, Red−, Blue−, or No−Shift in Hydrogen Bonds: A Unified Explanation, J. Am. Chem. Soc., Vol. 129, 2007, pp. 4620-4632.
[11] P. Hobza, P. Vladimr, L. S. Heinrich, W.S. Edward. Anti_Hydrogen Bond in the Benzen Dimer and Other Carbon Proton Donor Complexes, J. Phys. Chem. A, Vol. 102, 1998, pp. 2501-2504.
[12] B. Oliveira, R. de Araújo, M. Ramos, A Theoretical Study of Blue-Shifting Hydrogen Bonds in π Weakly Bound Complexes, J. Mol. Struct., Vol. 908, 2009, pp. 79-83.
[13] B. Reimann, K. Buchhold, S. Vaupel, B. Brutschy, Z. Havlas, V. Špirko, P. Hobza, Improper, Blue-Shifting Hydrogen Bond between Fluorobenzene and Fluoroform, J. Phys. Chem. A, Vol. 105, 2001, pp. 5560-5566.
[14] P. Hobza, Z. Havlas, The Fluoroform⋯Ethylene Oxide Complex Exhibits a C–H⋯O Anti-Hydrogen Bond, Chem. Phys. Lett., Vol. 303, 1999, pp. 447-452.
[15] P. D. H. Nhung, P. T. Nam, N. T. Trung, An Insight into Improper Hydrogen Bond of C-H···N Type in Complexes of Chloroform with Hydrogen Cyanide and its Flouro Derivative, Journal of Science - Quy Nhon University, Vol. 14, 2020, pp. 15-24.
[16] N. N Tri, N. T. H. Man, N. L. Tuan, N. T. T. Trang, D. T. Quang, N. T. Trung, Structure, Stability and Interactions in the Complexes of Carbonyls with Cyanides, Theor. Chem. Acc., Vol. 136, 2016, pp. 1-12.
[17] N. T. Trung, N. P. Hung, T. T. Hue. M. T, Nguyen. Existence of both Blue-Shifting Hydrogen Bond and Lewis Acid–Base Interaction in the Complexes of Carbonyls and Thiocarbonyls with Carbon Dioxide, Phys. Chem. Chem. Phys, , Vol. 13, 2011, pp. 14033-14042.
[18] A. K. Chandra, T. Zeegers-Huyskens, Theoretical Investigation of the Cooperativity in CH3CHO·2H2O, CH2FCHO·2H2O, and CH3CFO·2H2O Systems, J. At. Mol. Phys., Vol. 2012, 2012, pp. 1-8.
[19] N. T. T. Cuc, H. Q. Dai, N. T. A. Nhung, N. P. Hung, N. T. Trung, Roles of H2O to Hydrogen Bonds, Structure and Strength of Complexes, of CH3CHS and H2O, Vietnam J. Chem., Vol. 57, 2019, pp. 425-432.
[20] C. A. Hampel, Encyclopedia of the ChemicalElements, New York: Reinhold Book Corporation, 1968.
[21] H. Guo, N. Gresh, B. P. Roques, D. R. Salahub, Many-Body Effects in Systems of Peptide Hydrogen-Bonded Networks and their Contributions to Ligand Binding: A Comparison of the Performances of DFT and Polarizable Molecular Mechanics, J. Phys. Chem. B, Vol. 104, 2000, pp. 9746-9754.
[22] R. Wieczorek, J. J. Dannenberg, H-Bonding Cooperativity and Energetics of α-Helix Formation of Five 17-Amino Acid Peptides, J. Am. Chem. Soc., Vol. 125, 2003, pp. 8124-8129.
[23] J. Kriz, J. Dybal, J. Brus, Cooperative Hydrogen Bonds of Macromolecules, 2. Two-Dimensional Cooperativity in the Binding of Poly(4-vinylpyridine) to Poly(4-vinylphenol), J. Phys. Chem. B, Vol. 110, 2006, pp. 18338-18346.
[24] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Pople, Gaussian 09 (Revision B.01), Wallingford CT, 2009.
[25] F. Madison, GenNBO 5.G, Theoretical Chemistry Institute, University of Wisconsin, 2001.
[26] T. A. Keith, T.K. Gristmil, AIMAll (Version 19.10.12) Software, Overland Park KS, USA, 2019.
[27] I. Mata, I. Alkorta, E. Espinosa, E. Molins, Relationships between Interaction Energy, Intermolecular Distance and Electron Density Properties in Hydrogen Bonded Complexes under External Electric Fields, Chem. Phys. Lett.,
Vol. 507, 2011, pp. 185-189.
[28] A. Karpfen, E. S. Kryachko, Blue-Shifted A−H Stretching Modes and Cooperative Hydrogen Bonding, 1. Complexes of Substituted Formaldehyde with Cyclic Hydrogen Fluoride and Water Clusters. J. Phys. Chem. A, Vol. 111, 2007, pp. 8177-8187.
[29] I. Rozaz, I. Alkorta, J. Elguero, Behavior of Ylides Containing N, O, and C Atoms as Hydrogen Bond Acceptors, J. Am. Chem. Soc., Vol. 122, 2000, pp. 11154-11161.
[30] I. Alkorta, I. Rozaz. J. Elguero, Non-Conventional Hydrogen Bonds, J. Am. Chem. Soc. Rev., Vol. 27, 1998, pp. 163-170.
[31] Q. Li, X. An, B. Gong, J. Cheng, Cooperativity between O–H∙∙∙O and C–H∙∙∙O Hydrogen Bonds Involving Dimethyl Sulfoxide-H2O-H2O Complex, J. Phys. Chem. A, Vol. 111, 2007, pp. 10166-10169.