Truong Cong Doanh, Hac Thi Nhung, Nguyen Thi Hanh, Nguyen Thi Thu Hien, Doan Tien Dat, Vu Minh Tan, Hoang Mai Ha

Main Article Content

Abstract

The zinc borate nanoparticles (2ZnO.3B2O3.3H2O) were successfully prepared by precipitation reaction in aqueous solutions of borax and zinc sulfate using oleic acid as a surfactant. The structural, morphological characteristics and the wettability of the particle surface were studied through Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and the contact angle. The hydrophobic zinc borate (n-ZB) had nanoplatelet morphology with a diameter of 1.0 - 1.5 µm and thickness of about 90 nm. Nano zinc borate showed a synergistic influence with expandable graphite (EG) and red phosphorus (RP) on the flame retardant properties and thermo-oxidative stability of polypropylene (PP). The nanocomposite 7n-ZB/7RP/7EG/PP achieved the V-1 UL94 verticle burning test with a limited oxygen index of 23.7% and the char yield of 14.67 wt.% at 900 oC. Furthermore, the fire retardant performance and the mechanical properties of the nanocomposites loading ZB nanoparticles were improved compared with the composites employing commercial ZB microparticles.

Keywords: Nanoplatelets, nano zinc borate, hydrophobic, flame retardant.

References

[1] S. Zhang, A. R. Horrocks, A Review of Flame Retardant Polypropylene Fibers, Prog, Polym, Sci., Vol. 28, 2003, pp. 1517-1538.
[2] G. Gleixner, Flame Retardant PP Fibres-lateat Developments, Chem Fibers Int, Vol. 51, 2001, pp. 422-434.
[3] Z. Zhang, Z. Han, Y. Pan, D. Li, D. Wang, R. Yang, Dry Synthesis of Mesoporous Nanosheet Assembly Constructed by Cyclomatrix Polyphosphazene Frameworks and its Application in Flame Retardant Polypropylene, Chem, Eng, J., Vol. 395, 2020, pp. 125076.
[4] F. Qi, M. Tang, N. Wang, N. Liu, X. Chen, Z. Zhang, K. Zhang, X. Lu, Efficient Organic-inorganic Intumescent Interfacial Flame Retardants to Prepare Flame Retarded Polypropylene with Excellent Performance, The Royal Society of Chemistry, Vol. 7, 2017, pp. 31696-31706.
[5] B. Xu, X. Wu, W. Ma, L. Qian, F. Xin, Y. Qiu, Synthesis and Characterization of a Novel Organic-inorganic Hybrid Char-forming Agent and its Flame-retardant Application in Polypropylene Composites, J. Anal, Appl, Pyrolysis, Vol. 134, 2018, pp. 231-242.
[6] W. Wang, P. Wen, J. Zhan, N. Hong, W. Cai, Z. Gui, Y. Hua, Synthesis of a Novel Charring Agent Containing Pentaerythritol and Triazine Structure and its Intumescent Flame Retardant Performance for Polypropylene, Polym, Degrad, Stab, Vol. 144, 2017, pp. 454-463.
[7] X. Chen, J. Yu, S. Guo, Structure and Properties of Polypropylene Composites Filled with Magnesium Hydroxide, J. Appl, Polym, Sci., Vol. 102, 2006, pp. 4943-4951.
[8] M. E. Üreyen, E. Kaynak, Effect of Zinc Borate on Flammability of PET Woven Fabrics, Advances in Polymer Technology, Hindawi, 2019, https://doi.org/10.1155/2019/7150736.
[9] F. Laoutid, L. Bonnaud, M. Alexandre, J. M. L. Cuesta, Ph. Dubois, New Prospects in Flame Retardant Polymer Materials: From Fundamentals to Nanocomposites, Mater Sci Eng R, Vol. 63, 2009, pp. 100-125,
https://doi.org/10.1016/j.mser.2008.09.002.
[10] U. Braun, B. Schartel, Flame Retardant Mechanisms of Red Phosphorus and Magnesium Hydroxide in High Impact Polystyrene, Macromol Chem Phys, Vol. 205, 2004, pp. 2185-2196, https://doi.org/10.1002/macp.200400255.
[11] M. A. Fichera, U. Braun, B. Schartel, H. Sturm, U. Knoll, C Jager, Solid-state NMR Investigations of Pyrolysis and Thermo-oxidative Decomposition Products of a Polystyrene/red Phosphorus/magnesium Hydroxide System,
J. Anal, Appl, Pyrolysis, Vol. 78, 2007, pp. 378-386, https://doi.org/10.1016/j.jaap.2006.09.013.
[12] L. A. Savas, M. Dogan, Flame Retardant Effect of Zinc Borate in Polyamide 6 Containing Aluminum Hypophosphite, Polym, Degrad, Stab, Vol. 165, 2019, pp. 101-109, https://doi.org/10.1016/j.polymdegradstab.2019.05.005.
[13] Y. Xu, M. Tang, X. Chen, M. Chen, J. Yu, Y. Ma, Z. Sun, Z. Zhang, J. Lv, Effect of Red Phosphorus Masterbatch on Flame Retardancy and Thermal Stability of Polypropylene/thermoplastic Polyurethane Blends, Polym, Polym, Compos, Vol. 23, No. 2, 2015.
[14] J. L. Zhuo, J. Dong, C. M. Jiao, X. L. Chen, Synergistic Effects between Red Phosphorus and Alumina Trihydrate in Flame Retardant Silicone Rubber Composites, Plast, Rubber Compos, Vol. 42, No. 6, 2013, pp. 239-243.
[15] E. Gibertini, F. Carosio, K. Aykanat, A. Accogli, G. Panzeri, L. Magagnin, Silica-encapsulate Red Phosphorus for Flame Retardant Treatment on Textile, Surf, Interfaces, Vol. 25, 2021, https://doi.org/10.1016/j.surfin.2021.101252.
[16] Z. Sun, Y. Ma, Y. Xu, X. Chen, M. Chen, J. Yu, S. Hu, Z. Zhang, Effect of the Particle Size of Expandable Graphite on the Thermal Stability, Flammability, and Mechanical Properties of High-Density Polyethylene/Ethylene Vinyl-Acetate/Expandable Graphite Composites, Polym, Eng, Sci., 2014, pp. 1163-1169.
[17] Z. Zheng, Y. Liu, L. Zhang, H. Wang, Synergistic Effect of Expandable Graphite and Intumescent Flame Retardants on the Flame Retardancy and Thermal Stability of Polypropylene, J. Mater Sci, Vol. 51, 2016, pp. 5857-5871.
[18] Y. Cui, X. Liu, Y. Tian, N. Ding, Z. Wang, Controllable Synthesis of Three Kinds of Zinc Borates and Flame Retardant Properties in Polyurethane Foam, Colloids and Surfaces A: Physicochem, Eng, Aspects, Vol. 414, 2012, pp. 274-280, http://doi:10.1016/j.colsurfa.2012.08.028.
[19] O. N. Ata, E. Şayan, B. Engin, Optimization and Modeling of Zinc Borate (2ZnO·3B2O3·3.5H2O) Production with the Reaction of Boric Acid and Zinc Oxide, J. Ind Eng Chem, Vol. 17, 2011, pp. 493-497, http://doi:10.1016/j.jiec.2010.09.018.
[20] P. Gao, W. Song, F. Ding, X. Wang, M. Li, Controllable Synthesis and Flame-retardant Properties of Spherical Zinc Borate Nanostructure, Micro and Nano Letters, Vol. 7, 2021, pp. 863-866, http://doi:10.1049/mnl.2012.0418.
[21] Y. Tian, Y. He, L. Yu, Y. Deng, Y. Zheng, F. Sun, Z. Liu, Z. Wang, In Situ and One-step Synthesis of Hydrophobic Zinc Borate Nanoplatelets, Colloids and Surfaces A: Physicochem, Eng, Vol. 312, 2008, pp. 99-103.
[22] T. Yumei, G. Yupeng, J. Man, S. Ye, H. Bala, Synthesis of Hydrophobic Zinc Borate Nanodiscs for Lubrication, Materials Letters, Vol. 60, 2006, pp. 2511-2515, https://doi.org/10.1016/j.matlet.2006.01.108.
[23] L. Jun, X. Shuping, G. Shiyang, FT-IR and Raman Spectroscopic Study of Hydrated Borates, Spectrochim, Acta, Vol. 51, 1995, pp. 519-532, https://doi.org/10.1016/0584-8539(94)00183-C.
[24] L. Zhihong, H. Mancheng, Synthesis, Characterization and Thermochemistry of a New Form of 2MgO.3B2O3.17H2O, Thermochim, Acta, Vol. 414, 2004, pp. 215-218, https://doi.org/10.1016/j.tca.2003.12.026.
[25] J. Ibarra, J. Melendres, M. Almada, M. G. Burboa, P. Taboada, J. Juárez, M. A. Valdez, Synthesis and Characterization of Magnetite/PLGA/chitosan Nanoparticles, Mater, Res, Express, Vol. 2, 2015, pp. 095010, https://doi.org/10.1088/2053-1591/2/9/095010.
[26] A. K. Kota, G. Kwon, A. Tuteja, The Design and Applications of Superomniphobic Surfaces, NPG Asia Materials, 2014, https://doi.org/10.1038/am.2014.34.
[27] H. T. Nhung, N. T. Nhan, H. T. Oanh, N. T. T. Trang, D. Q. Tham, N . T. Ha, N. V. Tuyen, H. M. Ha, Synergistic Effects of Aluminum Hydroxide, Red Phosphorus, and Expandable Graphite on the Flame Retardancy and Thermal Stability of Polyethylene, J. Appl, Polym, Sci, 2020, https://doi.org/10.1002/app.50317.
[28] G. Si, D. Li, Y. You, X. Hu, Investigation of the Influence of Red Phosphorus, Expansible Graphite and Zinc Borate on Flame Retardancy and Wear Performance of Glass Fiber Reinforced PA6 Composites, Polymer Composites, Vol. 38, No. 10, 2015, pp. 2090-2097, https://doi.org/10.1002/pc.23781.
[29] M. Thirumal, D. Khastgir, N. K. Singha, B. S. Manjunath, Y. P. Naik, Effect of Expandable Graphite on the Properties of Intumescent Flame-retardant Polyurethane Foam, J. Appl Polym Sci, Vol. 110, 2008, pp. 2586-2594,
https://doi.org/10.1002/app.28763.
[30] M. Modesti, A. Lorenzetti, F. Simioni, G. Camino, Expandable Graphite as an Intumescent Flame Retardant in Polyisocyanurate-Polyurethane Foams, Polym Degrad Stab, Vol. 77, 2002, pp. 195-202, https://doi.org/10.1016/S0141-3910(02)00034-4.
[31] H. T. Nhung, P. D. Linh, N. T. Hanh, H. T. Oanh, D. T. H. Yen, N. T. Nhan, N. D, Tuyen, P. D. Long, T. T. Ha, N. T. H, N. T. Tung, H. M. Ha Influence of Organoclay on the Flame Retardancy and Thermal Insulation Property of Expandable Graphite/Polyurethane Foam, J. Chem., Vol. 2019, pp. 1-8, https://doi.org/10.1155/2019/4794106.
[32] S. Li, B. Long, Zi. Wang, Y. Tian, Y. Zheng, Q. Zhang, Synthesis of Hydrophobic Zinc Borate Nanoflakes and Its Effect on Flame Retardant Properties of Polyethylene, J. Solid State Chem., Vol. 183, 2010, pp. 957-962.
[33] Moustafa M. Y. Zaghloul, Mai M. Y. Zaghloul, Influence of Flame Retardant Magnesium Hydroxide on the Mechanical Properties of High Density Polyethylene Composites, J. Reinf, Plast, Compos., Vol. 36, 2017, pp. 1-15,
http://doi:10.1177/0731684417727143.